International Journal of Advanced Technology in Engineering and Science www.ijates.com
VVolume No.02, Special Issue No. 01, September 2014 ISSN (online): 2348 — 7550

JAVAVIRTUAL MACHINE
Manjeet Saini', Abhishek Jain?, Ashish Chauhan®

1.23Department Of Computer Science And Engineering, Dronacharya College Of Engineering

Khentawas, Farrukh Nagar, Gurgaon, Haryana

ABSTRACT
This machine or the ‘Simulated computer within the computer’ is known as i chine” or
JVM. It is an abstract machine. It is a specification that provides runti i code

can be executed. JVM loads, verifies and executes the code. It provi
definitions for the Memory area, Class file format, Register se
etc. The Java Virtual Machine forms part of a large syste

operating system and CPU architecture requires a di

Keywords: Just-In-Time, Interprete ilation, Transpiler,
Cross Compiler, De-Compiler, Low age, High Level

Language, Object Code, Translator.

I. INTRODUCTION

Java virtual machine i i efwhic d to execute the java byte code files. It is the code

platform without the need for rewriting and recompilation for each separate

pilation, not interpreting to achieve faster speed.

computer down to the very environment within which programs operate. These functions can be broken down

into seven basic parts:

° A set of registers

° A stack

o An execution environment
° A garbage-collected heap
° A constant pool

° A method storage area

. An instruction set

749|Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com
VVolume No.02, Special Issue No. 01, September 2014 ISSN (online): 2348 — 7550

Il. COMPILER

A compiler is a computer program (or set of programs) that transforms source code written in a programming
language (the source language) into another computer language (the target language, often having a binary form
known as object code).The most common reason for transforming the source code is to create
an executable program. The name "compiler" is primarily used for programs that translate source code from
a high-level programming language to a lower level language (e.g., assembly language or machine code). If the
compiled program can run on a computer whose CPU or operating system is different from the one on which the
compiler runs, the compiler is known as a cross-compiler. A program that translates from a low level language
to a higher level one is a de-compiler. A program that translates between high-lev

m that translates the form of

source-to-source compiler or transpiler. A language rewriter is usually a pro

expressions without a change of language. More generally, compilers are sometimes called

I11. INTERPRETER

Interpreter is a computer program that directly executes or i i i i ing or

ine independent code, which is then linked at
apiler (for JIT systems).

From the viewpo
byte-code, for which

the Java language.

piler, the Java virtual machine is just another processor with an instruction set, Java
e can be generated. The JVM was originally designed to execute programs written in
owever, the JVM provides an execution environment in the form of a byte-code instruction
set and a runtime system that is general enough that it can be used as the target for compilers of other languages.
Because of its close association with the Java language, the JVM performs the strict runtime checks mandated
by the Java specification. That requires C to byte-code compilers to provide their own lax machine abstraction,
for instance producing compiled code that uses a Java array to represent main memory (so pointers can be
compiled to integers), and linking the C library to a centralized Java class that emulates system calls. Most or all

of the compilers listed below use a similar approach.

750|Page

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Object_code
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Cross-compiler
http://en.wikipedia.org/wiki/Decompiler
http://en.wikipedia.org/wiki/Source-to-source_compiler
http://en.wikipedia.org/wiki/Rewriting
http://en.wikipedia.org/wiki/Translator_(computing)

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No0.02, Special Issue No. 01, September 2014 ISSN (online): 2348 — 7550

Several C to byte-code compilers exist:

e Nested-VM translates C to MIPS machine language first before converting to Java byte code.

e Cybil works similarly to Nested-VM but targets J2ME devices.

e LLJVM compiles C to LLVM IR, which is then translated to JVM byte-code.

e C2Jisalso GCC-based, but it produces intermediary Java source code before generating byte-code supports
the full ANSI C runtime. Available as a Win32 binary or as a Java executable.

e Java Backend for GCC, possibly the oldest project of its kind, was developed at The University of
Queensland in 1999.

e Javum is an attempt to port the full GNU environment to the JVM, and includes one of the above compilers
packaged with additional utilities.

e Compilers targeting Java byte-code have been written for other programming languages,
including Ada and COBOL

V.JVM (JAVA VIRTUAL MACHINE)

5.1 Just-In-Time Compilation
Just in time compilation is used by java JVM which is¥also knownyas dynamic tramslation. Just in time

compilation is done during execution of a programpat run time rather than prior toXecution. This consists of
translation to machine code which is directly executeds, JIT compilation isia eombination of two traditional
approaches to translation to machine code-‘ahead of time cempilation (AOT) and interpretation and combines
some advantages and drawbacks of both. JIT compilation is@ form of dynamic compilation and allows adaptive
optimization such as dynamigyrecompilation thus in principle JIT ecompilation can yield faster execution than
static compilation. Interpretation. antpJIT compilation are garticularly suited for dynamic programming
languages, as the runtime system can handlemlate-bound data types and enforce security guarantees. JIT
compilation fundamentally uses executable data,“and thus poses security challenges and possible exploits.
Implementation~of JIT compilation\consists of compiling source code or byte code to machine code and
executing it. This is generally done directly in memory — the JIT compiler outputs the machine code directly into
memory. and immediately.executes it, rather than outputting it to disk and then invoking the code as a separate
program, as in usual ahead<of\time compilation. In modern architectures this runs into a problem due
to executable space protection — arbitrary memory cannot be executed, as otherwise there is a potential security
hole. Thus memoryamust be“marked as executable; for security reasons this should be done after the code has

been written to memoryyand marked read-only, as writable/executable memory is a security hole

5.2 AOT (Ahead of Time Compilation)

Dynamic recompilationis a feature of some emulators and virtual machines, where the system
may recompile some part of a program during execution. By compiling during execution, the system can tailor
the generated code to reflect the program's run-time environment, and potentially produce more
efficient code by exploiting information that is not available to a traditional static compiler. Adaptive
optimizationis a technique incomputer sciencethat performs dynamic recompilation of portions of
a program based on the current execution profile. With a simple implementation, an adaptive optimizer may

simply make a trade-off between Just-in-time compilation and interpreting instructions Ahead-of-time (AOT)

751|Page

http://nestedvm.ibex.org/
http://cibyl.googlecode.com/
http://da.vidr.cc/projects/lljvm/
http://en.wikipedia.org/wiki/LLVM
http://www.novosoft-us.com/solutions/product_c2j.shtml
http://www.itee.uq.edu.au/~cristina/uqbt.html#gcc-jvm
http://sourceforge.net/projects/javum/
http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/COBOL

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No0.02, Special Issue No. 01, September 2014 ISSN (online): 2348 — 7550
compilation is the act of compiling a high-level programming language such as C, or an intermediate language
such asJava byte-code, .NET Common Intermediate Language (CIL), IBM System/38 or IBM System
"Technology Independent Machine Interface™ code, into a native (system-dependent) machine code. Most
languages with a managed code runtime that can be compiled to an intermediate language take advantage
of just-in-time (JIT). This, briefly, compiles intermediate code into machine code for a native run while the
intermediate code is executing, which may decrease an application's performance. Ahead-of-time compilation
eliminates the need for this step by performing the compilation before execution rather than during execution.
AOT compilation is mostly beneficial in cases where the interpreter (which is small) is too slow or JIT is too
complex or introduces undesirable latencies. In most situations with fully AOT compiled programs and libraries
it is possible to drop considerable fraction of runtime environment, thus saving disksSpace;, memory and starting
time. Because of this it can be useful in embedded or mobile devices. AOT An most cases produces machine
optimized code, just like a 'standard' native compiler. The difference is that AQT\transformsthe'byte-code of an
existing virtual machine into machine code. AOT compilers can’ perform “complex~and advanced code
optimizations which in most cases of JIT will be considered much too costly. On the other hand AOT can't
usually perform some optimizations possible in JIT, like runtime profile-guided optimizatiens, pseudo-constant

propagation or indirect/virtual function in lining.

V1. EXECUTION OF INSTRUCTION

The class loader subsystem is responsible€or more than just locating and importing the binary data for classes. It
must also verify the correctness of imported classes, allocate and initialize memory for class variables, and assist
in the resolution of symbolic references. These activities are performedysin a strict order:

a. Loading: finding and imparting,the binary data for a type

b. Linking: performing verification,‘preparation, and (optionally) resolution

c. Verification: epsuring the correctness of the importedstype

B

Preparationt allocating memoryfor€lass variablesand initializing the memory to default values
Resolution: transforming symbolicireferences from the type into direct references.

f. Inifialization: invokingyJava code that initializes class variables to their proper starting values.

6.1 StartupaDelay And Optimizations
JIT typically causes a slightadelay in initial execution of an application, due to the time taken to load and

compile the bytescode. Sometimes this delay is called "startup time delay". In general, the more optimization
JIT performs, the better the code it will generate, but the initial delay will also increase. A JIT compiler
therefore has to make a trade-off between the compilation time and the quality of the code it hopes to generate.
However, it seems that much of the startup time is sometimes due to 10-bound operations rather than JIT
compilation (for example, the rt.jar class data file for the Java Virtual Machine (JVM) is 40 MB and the JVM
must seek a lot of data in this contextually huge file). One possible optimization, used by Sun's Hot-Spot Java
Virtual Machine, is to combine interpretation and JIT compilation. The application code is initially interpreted,
but the JVM monitors which sequences of byte-code are frequently executed and translates them to machine
code for direct execution on the hardware. For byte-code which is executed only a few times, this saves the
compilation time and reduces the initial latency; for frequently executed byte-code, JIT compilation is used to
run at high speed, after an initial phase of slow interpretation. Additionally, since a program spends most time

752 |Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No0.02, Special Issue No. 01, September 2014 ISSN (online): 2348 — 7550
executing a minority of its code, the reduced compilation time is significant. Finally, during the initial code
interpretation, execution statistics can be collected before compilation, which helps to perform better
optimization. The correct tradeoff can vary due to circumstances. For example, Sun's Java Virtual Machine has
two major modes—<client and server. In client mode, minimal compilation and optimization is performed, to
reduce startup time. In server mode, extensive compilation and optimization is performed, to maximize
performance once the application is running by sacrificing startup time. Other Java just-in-time compilers have
used a runtime measurement of the number of times a method has executed combined with the byte-code size of
a method as a heuristic to decide when to compile. Still another uses the number of times executed combined
with the detection of loops. In general, it is much harder to accurately predict which methods to optimize in
short-running applications than in long-running ones. Native Image Generator by, Microsoft is another
approach at reducing the initial delay. Native Image Generator pre-compiles byte-code in a Common
Intermediate Language image into machine native code. As a result, no runtime compilationsiStheeded. .NET
framework 2.0 shipped with Visual Studio 2005 runs Native Image Generator on all of‘the Microsoft library
DLLs right after the installation. Pre-jitting provides a way to impfeve the startup time. However, the quality of
code it generates might not be as good as the one that is4itted, for the Same reasonsywhy code compiled
statically, without profile-guided optimization, cannot be & good as,JIT compiled*codefin the‘extreme case: the
lack of profiling data to drive, for instance, inline caghing\There also exist Java implementations that combine
an AOT (ahead-of-time) compiler with either a JIT compiler (ExcelsiorJET), or interpreter (GNU Compiler for

Java.)
VIl. SUMMARY

In a byte-code-compiled system, source code is translated to an intermediate representation known as byte-code.
Byte-code is not the machine cade ffor, any particular computer, and may be portable among computer
architectures. The byte-code may, then be“interpreted by, or run on, a virtual machine. The JIT compiler reads
the byte-codes ingmany sections (orin fully'rarely) and compiles them dynamically into machine language so the
program cangfun-faster. Java performs runtime checks on various sections of the code and this is the reason the
entire code is not compiled at once. This can be done per-file, per-function or even on any arbitrary code
fragment; the code can be compiled when'it is about to be executed (hence the name "just-in-time"), and then
cached“and, reused later without needing to be recompiled. In contrast, a traditional interpreted virtual
machine will simply interpret the byte-code, generally with much lower performance. Some interpreters even
interpret source‘code, without'the step of first compiling to byte-code, with even worse performance. Statically
compiled code or nativescode is compiled prior to deployment. A dynamic compilation environment is one in
which the compiler” can be used during execution. For instance, most Common Lisp systems have
a compile function which can compile new functions created during the run. This provides many of the
advantages of JIT, but the programmer, rather than the runtime, is in control of what parts of the code are
compiled. This can also compile dynamically generated code, which can, in many scenarios, provide substantial
performance advantages over statically compiled code, as well as over most JIT systems. A common goal of
using JIT techniques is to reach or surpass the performance of static compilation, while maintaining the
advantages of byte-code interpretation: Much of the "heavy lifting" of parsing the original source code and
performing basic optimization is often handled at compile time, prior to deployment: compilation from byte-

code to machine code is much faster than compiling from source. The deployed byte-code is portable, unlike

753|Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No0.02, Special Issue No. 01, September 2014 ISSN (online): 2348 — 7550
native code. Since the runtime has control over the compilation, like interpreted byte-code, it can run in a secure
sandbox. Compilers from byte-code to machine code are easier to write, because the portable byte-code
compiler has already done much of the work.

JIT code generally offers far better performance than interpreters. In addition, it can in some cases offer better

performance than static compilation, as many optimizations are only feasible at run-time:

1. The compilation can be optimized to the targeted CPU and the operating system model where the
application runs. For example JIT can choose SSE2 vector CPU instructions when it detects that the CPU
supports them. However there is currently no mainstream JIT that implements this. To obtain this level of
optimization specificity with a static compiler, one must either compile a binary for each intended
platform/architecture, or else include multiple versions of portions of the codewithina single binary.

2. The system is able to collect statistics about how the program is actually rdnning in the environment it is in,
and it can rearrange and recompile for optimum performance. However, some static compilérsican also take
profile information as input.

3. The system can do global code optimizations (e.g. in lining of library functions) without 1gsing the
advantages of dynamic linking and without the overheads inherentito static compilers.and linkers.
Specifically, when doing global inline substitutions, & static.compilatiofi' process may need run-time checks
and ensure that a virtual call would occur if the actualglass of the ebject overrides theyin lined method, and
boundary condition checks on array accessés.may need to be processed withinfloops. With just-in-time
compilation in many cases this processing canbe moved out of loops, often giving large increases of speed.

4. Although this is possible with statically compiled garbage collected languages, a byte-code system can
more easily rearrange executed code for better cache utilization.

VIIl. FUTURE SCOPE

Continuing porting more of Perl to the JVM ‘wviagKawa is the most open area for future work .
Currently, only, a small ‘subset of Perl is supported, but the path is clear.
The task of portingy Perl to the\JVM becomes much more feasible via the Kawa’s architecture.
The 4Kawa/JVM envirenment can, _be a real competitor to Microsofts .NET system.
KawalJViM system has the added advantage of being completely open and free software, while Microsoft's
.NET will remain proprietary. This advantage can surely carry a Kawa/JVM-based language system, along with
a Perl port to'Kawa/JVM, t@ suecess for users and programmers alike.

IX. REFERENCES

[1] Compiler textbook references a collection of references to mainstream Compiler Construction Textbooks.

[2] How the Java Virtual Machine Works by Bikash Shaw.

[3] Compiler textbook references A collection of references to mainstream Compiler Construction Textbooks.

[4] Aho, Alfred V.; Sethi, Ravi; Ullman, Jeffrey D. (1986). Compilers: Principles, Techniques, and Tools (1st
Ed.). Addison-Wesley. ISBN 9780201100884.

[5] Allen, Frances E. (September 1981). "A History of Language Processor Technology in IBM". IBM Journal
of Research and Development (IBM) 25 (5). (Subscription required (help)).

754 |Page

http://www.informatik.uni-trier.de/~ley/db/books/compiler/index.html
http://www.informatik.uni-trier.de/~ley/db/books/compiler/index.html
http://en.wikipedia.org/wiki/Alfred_V._Aho
http://en.wikipedia.org/wiki/Ravi_Sethi
http://en.wikipedia.org/wiki/Jeffrey_D._Ullman
http://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
http://en.wikipedia.org/wiki/Addison-Wesley
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/9780201100884
http://en.wikipedia.org/wiki/Frances_E._Allen
http://www.research.ibm.com/journal/rd/255/ibmrd2505Q.pdf
http://en.wikipedia.org/wiki/IBM

International Journal of Advanced Technology in Engineering and Science www.ijates.com

VVolume No.02, Special Issue No. 01, September 2014 ISSN (online): 2348 — 7550

[6] Allen, Randy; Kennedy, Ken (2001). Optimizing Compilers for Modern Architectures. Morgan Kaufmann
Publishers. ISBN 1-55860-286-0.

[71 Appel, Andrew Wilson (2002). Modern Compiler Implementation in Java (2nd Ed.).Cambridge University
Press. ISBN 0-521-82060-X.

[81 Apple, Andrew Wilson (1998). Modern Compiler Implementation in ML. Cambridge University
Press. ISBN 0-521-58274-1.

[9] Bornat, Richard (1979). Guide. MacMillan. ISBN 0-333-21732-2.

[10] Cooper, Keith D.; Torczon, Linda (2004). Engineering a Compiler. Morgan Kaufmann. ISBN 1-55860-
699-8.

[11] Leveret, Bruce W.; Catelli, R. G. G.; Newcomer, Joseph M.; Hobbs, S.04 A.H.; Schatz, B.R,;
Wulf, W.A. (August 1980). "An Overview of the Production — /Quality Compiler — Compiler
Project”. Computer (Carnegie-Mellon University) 13 8-49.Doi
10.1109/MC.1980.1653748. ISSN 0018-9162. (Subscription re

[12] McKee-man, William Marshall; Horning, James J.; rt-man, David B. (1970). A mpiler
Generator. Englewood Cliffs, NJ: Prentice-Hall. ISBN

[13] Much-nick, Steven (1997). Advanced Compiler ion. an Kaufmann
Publishers. ISBN 1-55860-320-4.

[14] Scott, Michael Lee (2005). Programming i . aufmann. ISBN 0-12-
633951-1.

[15] Srikant, Y. N.; Shankar, Priti (200 i : Optimizations and Machine Code

Generation. CRC Press. ISBN 0-8493-1240-X.

755|Page

