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I. INTRODUCTION 
 

The notion of non-Archimedean Menger space has been established by Istratescu


 and Crivat [9].  The existence 

of fixed point of mappings on non-Archimedean Menger space has been given by Istratescu


 [6].  This has been 

the extension of the results of Sehgal and Bharucha - Reid [16] and Sherwood [17] on a Menger space. Cho et. 

al. [3] proved a common fixed point theorem for compatible mappings in non-Archimedean Menger PM-space.  

Achari [1] studied the fixed points of quasi-contraction type mappings in non-Archimedean PM-spaces and 

generalized the results of Istratescu


 [7]. Recently Khan and Sumitra [13] proved a common fixed point theorem 

for three pointwise R-weakly commuting mappings in complete non-Archimedean Menger PM-spaces. In the 

present paper we prove a unique common fixed point theorem for four occasionally weakly compatible self 

maps in non-Archimedean Menger PM-spaces without using the notion of continuity. Our result generalizes and 

extends the results of Khan and Sumitra [13] and others. 

 

II. PRELIMINARIES 
 

Definition 2.1. [7] Let X be a non-empty set and D be the set of all  left-continuous distribution functions.  An 

ordered pair (X, F) is called a non-Archimedean probabilistic metric space (briefly, a  N.A. PM-space) if F  is a 

mapping from X×X into D satisfying the following conditions (the distribution function F(x,y) is denoted by Fx,y 

for all x,y X) : 

(PM-1) F(x, y; t) = 1,   for all t > 0,   if and only if   u = v ; 

(PM-2) F(x, y; t) = F(y, x; t); 

(PM-3) F(x, y; 0) = 0; 

(PM-4) If  F(x, y; t1) = F(y, z; t2) = 1 then F(x, z; max{t1, t2}) = 1, 

  for all  x, y, z  X.  
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Definition 2.2. [14]  A t-norm is a function : [0,1] × [0,1]  [0,1] which is associative, commutative, 

nondecreasing in each coordinate and (a,1) = a  for every  a  [0,1]. 

Definition 2.3. [8] A N.A. Menger PM-space is an ordered triple (X, F, ), where  

(X, F) is a non-Archimedean PM-space and  is a t-norm  satisfying the following condition: 

(PM-5)      Fu,w (max{x,y})     (Fu,v (x), Fv,w(y) ),  

for all u, v, w  X and  x, y  0. 

Definition 2.4. [2]  A PM-space (X, F) is said to be of type (C)g if there exists a g  such that  g(Fx,y(t)) 

g(Fx,z(t)) + g(Fz,y(t)) 

for all x, y, z X and t 0, where g | g : [0,1] [0,) is continuous, strictly decreasing, g(1) = 0 and 

g(0) < }. 

Definition 2.5. [2]  A N.A. Menger PM-space (X, F, ) is said to be of type (D)g if there exists a g  such that 

g((s,t)) g(s) + g(t)  for all s, t 

Remark 2.1. [2]  

(1)  If a N.A. Menger PM-space (X, F, ) is of type (D)g then (X, F, ) is of type (C)g. 

(2) If a N.A. Menger PM-space (X, F, ) is of type (D)g, then it is metrizable, where the metric d on X is 

 defined by  

 d(x,y) =   
1

x,y

0

g F (t) d(t)
 

for  all x, y X.                      (*) 

Throughout this paper, suppose (X, F, ) be a complete N.A. Menger PM-space of type (D)g with a continuous 

strictly increasing  t-norm . 

        Let  [0, +)   [0,) be a function satisfied the condition () : 

() is upper-semicontinuous from the right and (t) < t for all t > 0.   

Lemma 2.1. [3] If a function : [0,+   [0,+) satisfies the condition (), then we have 

(1) For all t 0, limn 
n
(t) = 0, where 

n
(t) is n

th
 iteration of (t). 

(2) If {tn} is a non-decreasing sequence of real numbers and tn+1 (tn),  

 n = 1, 2, … then limntn = 0.  In particular, if t (t) for all t 0, then   

 t = 0. 

 Definition 2.6. [10]  Let A, S : X X be mappings. A and S are said to be compatible if 
n
lim


 g(F(ASxn,SAxn; 

t)) = 0 for all t > 0, whenever {xn} is a sequence in X such that 
n
lim


 

Axn = 
n
lim
  

Sxn  = z for some z in X. 

Definition 2.7. [11] Self maps A and S of a N.A. Menger PM-space  (X, F, ) are said to be weakly compatible 

(or coincidentally commuting)  if they commute at their coincidence points, i.e.  if Ap = Sp for some p X 

then  

ASp = SAp.  

Definition 2.8. Self maps A and S of a N.A. Menger PM-space  (X, F, )  are said to be occasionally weakly 

compatible (owc)  if and only if there is a point x in X which is coincidence point of A and S at which A and S 

commute.  
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Lemma 2.2. [3]  Let A, B, S, T : X X  be mappings satisfying the condition (1) and (2) as follows : 

(1) A(X) T(X) and B(X) S(X). 

(2) g(F(Ax,By; t))  (max{g(F(Sx,Ty; t)), g(F(Sx, Ax; t)), g(F(Ty, By; t)),  

 ½(g(F(Sx, By; t)) + g(F(Ty, Ax; t)))}) 

 for all t > 0, where a function : [0,+) [0,+) satisfies the condition (). Then the sequence {yn} 

 in X, defined by  Ax2n = Tx2n+1 = y2n  and  Bx2n+1 = Sx2n+2 = y2n+1    for n = 0, 1, 2, ...,   such that 

 
n
lim


g(F(yn,yn+1; t)) = 0   for all t > 0   is a Cauchy sequence in X.  

 

III. MAIN RESULT 
 

Theorem  3.1. Let (X, F, ) be a complete N.A.  Menger  PM-space and  A, B, S, T : X X  be mappings 

satisfying the conditions  

(3.1) A(X) T(X),  B(X)   S(X); 

(3.2) the pairs (A, S) and (B, T) are occasionally weakly compatible and 

(3.3) g(F(Ax, By; t))  [max{g(F(Sx, Ty; t)), g(F(Sx, Ax; t)),  

 g(F(Ty, By; t)),  ½(g(F(Sx, By; t)) + g(F(Ty, Ax; t)))}] 

 for every x, y X,  where  satisfies the condition ().  Then A, B, S and T have a unique common 

 fixed point in X.  

Proof.  Since A(X) T(X), for any x0  X, there exists a point x1 X such that  

Ax0 = Tx1.  Since B(X) S(X), for this x1, we can choose a point x2  X  such that Bx1 = Sx2  and so on. 

Inductively, we can define a  sequence {yn} in X such that 

 yn = Ax2n = Tx2n+1, y2n+1 =  Bx2n+1 = Sx2n+2 for  n = 1, 2, ... .          (1) 

Let Mn = g(F(Axn, Bxn+1; t) = g(F(yn, yn+1; t) for  n = 1, 2, …  .  Then 

M2n = g(F(Ax2n, Bx2n+1; t) 

 [max{g(F(Sx2n, Tx2n+1; t)), g(F(Sx2n, Ax2n; t)), g(F(Tx2n+1, Bx2n+1; t)),  

½(g(F(Sx2n, Bx2n+1; t)) + g(F(Tx2n+1, Ax2n; t)))}] 

 [max{g(F(y2n-1, y2n; t)), g(F(y2n-1, y2n; t)), g(F(y2n, y2n+1; t)),  

½(g(F(y2n-1, y2n+1; t)) + g(F(y2n, y2n; t)))}] 

i.e. M2n  [max{M2n-1, M2n-1, M2n, ½(M2n-1 + M2n)}].      (2) 

If M2n > M2n-1  then by (2),   

M2n   (M2n), a contradiction. 

If M2n-1 > M2n  then by (2),   

  M2n   (M2n-1). 

So by Lemma 2.1, we have limn M2n = 0, i.e. 

 limng(F(Ax2n, Bx2n+1; t)) = 0   

i.e. limng(F(y2n, y2n+1; t)) = 0. 

Similarly, we can show that 
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limng(F(Bx2n+1, Ax2n+2; t)) = 0   

i.e. limng(F(y2n+1, y2n+2; t)) = 0. 

Thus, we have 

limng(F(Ax2n, Bxn+1; t)) = 0  for all t > 0 

i.e.  limn g(F(yn, yn+1; t)) = 0  for all t  > 0.         (3) 

Hence, by Lemma 2.2, the sequence {yn} is a Cauchy sequence.  Since X is complete, so the sequence {xn} 

converges to a point z in X and so the subsequences {Ax2n}, {Bx2n+1}, {Sx2n} and {Tx2n+1} also converges to the 

limit z. 

Since B(X) S(X),  there exists a point u X such that z = Su.  Then, using (3.3), we have 

 g(F(Au, z; t)) g(F(Au, Bx2n-1; t)) + g(F(Bx2n-1, z; t)) 

[max{g(F(Su, Tx2n-1; t)), g(F(Su, Au; t)), g(F(Tx2n-1, Bx2n-1; t), 

½(g(F(Su, Bx2n-1; t)) + g(F(Tx2n-1, Au; t)))}]. 

Letting n , we get 

 g(F(Au, z; t))   [max{g(z, z; t)), g(F(z, Au; t)), g(F(z, z; t)), ½(g(F(z, z; t)) + g(F(z, Au; t)))}] 

   =  [max{0, g(F(z, Au; t)), 0, ½(0 + g(F(z, Au; t)))}] 

(g(F(Au, z; t)))  

for all t > 0, which implies that g(F(Au, z; t)) = 0 for all t > 0 by Lemma 2.1. Therefore, Au = Su = z.  Since 

A(X) T(X), there exists a point v in X such that z = Tv.  Again, using (3.3), we have 

 g(F(z, Bv; t)) = g(F(Au, Bv; t))  

 [max{g(F(Su, Tv; t)), g(F(Su, Au; t)), g(F(Tv, Bv; t)),  

½(g(F(Su, Bv ; t)) + g(F(Tv, Au; t)))}] 

 [max{g(F(z, z; t)), g(F(z, z; t)), g(F(z, Bv; t)),  

½(g(F(z, Bv ; t)) + g(F(z, z; t)))}] 

 [max{0, 0, g(F(z, Bv; t)), ½(g(F(z, Bv ; t)) + 0)}] 

 (g(F(Bv, z; t)))  for all t  > 0, 

which implies that g(F(Bv, z; t))  = 0 for all t > 0 by Lemma 2.1. 

Therefore, Bv = Tv = z. Since A and S are occasionally weakly compatible mappings, ASz = SAz i.e. Az = Sz.  

Now we show that z is a fixed point of A.  If Az  z, then by (3.3), we have 

 g(F(Az, z; t)) = g(F(Az, Bv; t))  

 [max{g(F(Sz, Tv; t)), g(F(Sz, Az; t)), g(F(Tv, Bv; t)),  

½(g(F(Sz, Bv ; t)) + g(F(Tv, Az; t)))}] 

 [max{g(F(Az, z; t)), 0, 0, ½(g(F(Az, z; t)) + g(F(z, Az; t)))}] 

 (g(F(Az, z; t)))  for all t  > 0, 

which implies that g(F(Az, z; t) = 0  for all t > 0 by Lemma 2.1. Therefore, Az = z. 

Hence, Az = Sz = z. 

 Similarly, as B and T are occasionally weakly compatible mappings, we have 
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 Bz = Tz = z, since by (3.3), we have 

g(F(z, Bz; t)) = g(F(Az, Bz; t))  

 [max{g(F(Sz, Tz; t)), g(F(Sz, Az; t)), g(F(Tz, Bz; t)),  

½(g(F(Sz, Bz ; t)) + g(F(Tz, Az; t)))}] 

 [max{g(F(z, Bz; t)), 0, 0, ½(g(F(z, Bz; t)) + g(F(Bz, z; t)))}] 

 (g(F(Bz, z; t)))  for all t  > 0, 

which implies that g(F(Bz, z; t) = 0  for all t > 0 by Lemma 2.1. Therefore, Bz = z. 

Hence, Bz = Tz = z. 

Thus, Az = Bz = Sz = Tz = z, that is, z is a common fixed point of A, B, S and T. 

Finally, in order to prove the uniqueness of z, suppose that w is another common fixed point of A, B, S and T. 

Then by (3.3), we have 

         g(F(z, w; t)) = g(F(Az, Bw; t))  

 [max{g(F(Sz, Tw; t)), g(F(Sz, Az; t)), g(F(Tw, Bw; t)),  

½(g(F(Sz, Bw; t)) + g(F(Tz, Aw; t)))}] 

 g(F(z, w; t)) for all t > 0, 

which implies that g(F(z, w; t)) = 0 for all t > 0 by Lemma 2.1.  

Hence, z = w. 

Therefore, z is a unique common fixed point of A, B, S and T. 

Corollary 3.1. Let A, S, T : X X be the mappings satisfying 

(i) A(X) S(X) T(X), 

(ii) the pairs {A, S} and {A, T} are occasionally weakly compatible and 

(iii) g(F(Ax, Ay; t))  [max{g(F(Sx, Ty; t)), g(F(Sx, Ax; t)), g(F(Ty, Ay; t)),  

 ½(g(F(Sx, Ay; t)) + g(F(Ty, Ax; t)))}], 

for every x, y X, where satisfies the condition ().  Then A, S and T have a unique common fixed point in 

X. 

Corollary 3.2. Let A, S : X X be the mappings satisfying 

(i) A(X) S(X), 

(ii) the pairs {A, S} is occasionally weakly compatible and 

(iii) g(F(Ax, Ay; t))  [max{g(F(Sx, Sy; t)), g(F(Sx, Ax; t)),  

 g(F(Sy, Ay; t)), ½(g(F(Sx, Ay; t)) + g(F(Sy, Ax; t)))}], 

for every x, y X, where satisfies the condition ().  Then A and S have a unique common fixed point in X. 

Remark 3.1. In Theorem 3.1, if S and T are continuous and pairs {A, S} and {B, T} are compatible instead of 

condition (3.2), the theorem remains true. 

Remark 3.2.  In our generalization the inequality condition (3.3) satisfied by the mappings A, B, S and T is 

stronger than that of Theorem 2 of Khan and Sumitra [13] and Theorem 1.9 of Vasuki [20]. 
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