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ABSTRACT 

An algorithm is specification of a finite sequence of instructions to be carried out in order to solve a given 

problem. Sorting is considered as a fundamental operation in computer science as it is used as an intermediate 

step to manage data in many operations. Sorting refers to the process of arranging list of elements in a 

particular order. The elements are arranged in increasing or decreasing order of their key values. This research 

paper presents three different types of sorting algorithms using Divide and Conquer strategy like Merge sort, 

Quick sort, Shell sort and also gives their performance analysis with respect to time complexity along with the 

applications. These algorithms are important and have been an area of focus for a long time but still the 

question remains the same of “when to use which algorithm?” which is the main reason to perform this 

research. Each algorithm solves the sorting problem using the divide and conquer paradigm but in a different 

way. This research provides a detailed study of how all these algorithms work and then compares them on the 

basis of various parameters apart from time complexity with the help of their applications to reach our 

conclusion. 
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I.  INTRODUCTION 
 

Sorting is an operation that segregates items into groups according to specified criterion. In data domain, sorting 

refers to the operation of arranging numerical data in increasing or decreasing order or non numerical data in 

alphabetical order. The usefulness and significance of sorting is depicted from the day to day application of 

sorting in real-life objects. For instance, objects are sorted in Telephone directories, income tax files, tables of 

contents, libraries, dictionaries. Sorting is a classic subject in computer science. There are three reasons [3] for 

studying sorting algorithms. First, sorting algorithms illustrate many creative approaches to problem solving and 

these approaches can be applied to solve other problems. Second, sorting algorithms are good for practicing 

fundamental programming techniques using selection statements, loops, methods, and arrays. Third, sorting 

algorithms are excellent examples to demonstrate algorithm performance. The performance analysis and design 

of useful sorting algorithms has remained one of the most important research areas in the field. Some algorithms 

are more efficient than others, in that less time or memory is required to execute them. The analysis [1] of 

algorithms studies time and memory requirements of algorithms and the way those requirements depend on the 

number of items being processed. The efficiency of a sorting algorithm depends on how fast and accurately it 

sorts a list and also how much space it requires in the memory.  

 The methods of sorting [1] can be divided into two categories: 

 An internal sort requires that the collection of data fit entirely in the computer‟s main memory. 

 We can use an external sort when the collection of data cannot fit in the computer‟s main memory all at 

once but must reside in secondary storage such as on a hard disk, floppy, tape etc. 
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The complexity of a sorting algorithm [8] measures the running time of function in which „n‟ number of items to 

be sorted. The choice of which sorting method is suitable for a problem depends on various efficiency 

considerations for different problem. Four most important of these considerations are: 1.The length of time spent 

by programmer in coding a particular sorting program. 2. Amount of machine time necessary for running the 

program. 3. The amount of memory necessary for running program. 4. Stability-does the sort preserves the order 

of keys with equal values.  
 

 
II. ANALYSIS OF ALGORITHMS 

 

A. Merge Sort 

Merge sort was invented by John von Neumann in 1945.It is an O(n log n) comparison based sorting algorithm 

using divide and conquer strategy. In Divide-And-Conquer paradigm the problem is divided into a number of 

similar sub-problems of smaller size, Conquer the sub-problems by solving the sub-problems recursively, if the 

Sub-problem size is small enough, solve the problems in straightforward manner [9]. Combine the solutions of 

the sub-problems to obtain the solution for the original problem. 

Conceptually, a merge sort works as follows  

1. Divide the unsorted list into n sublists, each containing 1 element (a list of 1element is considered sorted).  

2. Repeatedly merge sublists to produce new sublists until there is only 1 sublist remaining. This will be the 

sorted list. 

In practical to sort an array A [p . . r]: Divide the n-element sequence to be sorted into two subsequences of n/2 

elements each. Conquer by sorting the subsequences recursively using merge sort, when the size of the 

sequences is 1 there is nothing more to do combine by merging the two sorted subsequences. 

 

2.1.1 Algorithm 

    MERGE-SORT (A, p, r) 

    Begin 

                 if p < r                    Check for base case 

    then q ← (p + r)/2                   Divide 

  MERGE-SORT (A, p, q)                  Conquer 

  MERGE-SORT(A, q + 1, r)    Conquer 

  MERGE(A, p, q, r)     Combine 

      End 

 Initial call: MERGE-SORT(A, 1, n) 

 

2.1.2 An Example 

P                       q                                r 

 

Divide:q=4 

1 2 3 4 5 6 7 8 

6 2 3 1 7 4 2 5 
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2.1.3 Conquer and Merge 

T  

 

2.1.4 Merge 

 
 

Input: Array A and indices p, q, r such that    p ≤ q < r, Subarrays A [p . . q] and A[q + 1 . . r] are sorted 

 

Output: One single sorted subarray A [p . . r]. 

Idea for merging: In Two piles of sorted cards, Choose the smaller of the two top cards, Remove it and place it 

in the output pile, Repeat the process until one pile is empty. Take the remaining input pile and place it face-

down onto the output pile 

1 2 3 4 5 6 7 8 

6 3 2 1 7 5 4 2 

p r q 

1 

5 

2 

2 

3 

4 

4 

7 1 

6 

3 

7 

2 

8 

6 

5 

1 2 3 4 5 6 7 8 

7 6 5 4 3 2 2 1 

1 2 3 4 

7 5 4 2 

5 6 7 8 

6 3 2 1 

1 2 

5 2 

3 4 

7 4 

5 6 

3 1 

7 8 

6 2 

1 2 3 4 

7 4 2 5 

5 6 7 8 

6 2 3 1 

1 2 

2 5 

3 4 

7 4 

5 6 

3 1 

7 8 

6 2 

1 

5 

2 

2 

3 

4 

4 

7 1 

6 

3 

7 

2 

8 

6 

5 
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Alg.: MERGE(A, p, q, r) 

1. Compute n1 and n2 

2. Copy the first n1 elements into L[1 . . n1 + 1] and  the next n2 elements into R[1 . . n2 + 1] 

3. L[n1 + 1] ← ;     R[n2 + 1] ←  

4.  i ← 1;    j ← 1 

5.  for k ← p to r 

6.        do if L[ i ] ≤ R[ j ] 

7.              then A[k] ← L[ i ] 

8.                       i ←i + 1 

9.              else A[k] ← R[ j ] 

10.                       j ← j + 1 

 

             

2.1.5 Analysis 

Analyzing Divide-and Conquer Algorithms [1]:The recurrence is based on the three steps of the paradigm:T(n) 

– running time on a problem of size n.Divide the problem into a subproblems, each of size n/b: takes 

D(n).Conquer (solve) the subproblems aT(n/b) .Combine the solutions C(n)   

T(n) =    (1)                   if n ≤ c  

              aT (n/b) + D(n) + C(n)    otherwise 

MERGE-SORT Running Time: 

Divide: Compute q as the average of p and r: D(n) = (1) 

Conquer: Recursively solve 2 subproblems, each of size n/2  2T (n/2) 

Combine: MERGE on an n-element subarray takes (n) time  C(n) = (n) 

The recurrence relation for the merge sort is as follows:   

T(n) =   (1)               if n =1  

             2T(n/2) + c(n)  if n > 1 

Solve the Recurrence 

p q 

7 5 4 2 

6 3 2 1 

r q + 1 

L 

R 

 

 

1 2 3 4 5 6 7 8 

6 3 2 1 7 5 4 2 

p r q 

n1 n2 
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T(n) =      c  if n = 1 

   2T(n/2) + cn   if n > 1 

Use Master‟s Theorem [3]: Compare n with f(n) = cn then T(n) = Θ(n log n) 

      In short to analyze the time complexity of Merge Sort function, we need to consider the two distinct 

processes that make up its implementation. First, the list is split into halves. We divide a list in half logn times 

where n is the length of the list. The second process is the merge. Each item in the list will eventually be 

processed and placed on the sorted list. So the merge operation which results in a list of size n requires n 

operations. The result of this analysis is that logn splits, each of which costs n for a total of n (log n) operations. 

The best, average and the worst case time complexities are O (n logn) [8]. The Double Memory Merge Sort runs 

O (N log N) for all cases, because of its Divide and Conquer approach [4]. There are other variants of Merge 

Sorts including k-way merge sorting, but the common variant is the Double Memory Merge Sort. Though the 

running time is O(N log N) and runs much faster than insertion sort and bubble sort, merge sort‟s large memory 

demands makes it not very practical for main memory sorting. 
 

2.1.6 Advantages and Disadvantages 

 

2.1.6.1 Advantages 

 Time Complexity is O (nlogn).  

 Running time is insensitive of the input. 

 It can be used for both internal and external sorting  

 

2.1.6.2 Disadvantages 

 At least twice the memory requirements of the other sorts because it is recursive.
 

 Space complexity is very high as it requires extra space N.
 

 

2.1.7 Applications 

To sort a huge randomly-ordered file of small records like process transaction record for a phone company, the 

merge sort is the best than any other sorting technique as the selection sort always takes quadratic time, bubble 

sort and insertion sort also takes quadratic time for randomly-ordered keys. 
 

B. Quick Sort 

Quick sort is developed by C. A. R. Hoare (1962). Quicksort is a divide-and-conquer sorting algorithm in which 

division is dynamically [1] carried out (as opposed to static division in Merge sort).  

The three steps of Quicksort are as follows: 

Divide: Rearrange the elements and split the array into two subarrays and an element in between such that each 

element in the left subarray is less than or equal to the middle element and each element in the right subarray is 

greater than the middle element. 

Conquer: Recursively sort the two subarrays. 

Combine: None. 

To  implement  this  logic the  quick  sort  algorithm selects  an  element,  called  the  pivot,  in  the  array. 

Divide the array into two parts such that all the elements in the first part are less than or equal to the pivot and 

all the elements in the second part are greater than the pivot. Recursively apply the quick sort algorithm to the 

first part and then the second part.   
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2.2 Algorithm 

    Quicksort(A,n) 

       1: Quicksort‟(A,1,n) 

     Quicksort‟ (A, p, r) 

            1: if p>=r then return 

            2: q=Partition(A,p,r) 

            3: Quicksort‟(A,p,q-1) 

            4: Quicksort‟(A,q+1,r) 

The subroutine Partition: 

     Given a subarray A[p..r] such that p<=r-1,this subroutine rearranges the input subarray into two subarrays, 

A[p…q-1]and A[q+1…r], so that each element in A[p..q -1]is less than or equal to A[q]  and each element in  

A[q+1…r]  is  greater than or  equal to A[q].Then the subroutine  outputs the value of q. 

    Use the initial value of A[r] as the “pivot” in the sense that the keys are compared against it. Scan the keys   

A[p..r-1] from left to right and flush to the left all the keys that are greater than or equal to the pivot. 

    The Algorithm 

           Partition(A,p,r) 

           1: x=A[r] 

           2: i=p-1 

           3: for j=p to r-1do 

           4:       if A[j]<=x then 

                     { 

           5:            i= i+1 

           6:           Exchange A[i] andA[j]  

                     } 

           7: Exchange A[i+1] and A[r] 

           8: return i+1 

 

2.2.1 Analysis 

The  quick-sort  algorithm  requires O(n  log(n))  to O(n
2
)  work[7], depending  on  how  the  pivot  value  is  

chosen. If  the  median[5]  is  chosen  as  the  pivot, then  quick-sort  can  actually  be  slightly  faster  than  
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merge-sort,  since  there  are  no comparisons involved in the conquer phase. The  best-case  input  is  a  

sequence  that  has  all  subsequences  produced  by  splitting with  the  same  mean  as  their  median,  since  

this  produces  the  fewest  number  of levels. The worst-case input for splitting on the mean is a geometric 

series sorted in opposite order to the desired sorting order. The time complexity ranges between n log(n) and n
2  

depending on the key distribution and the pivot choices.   

          Best Case = O(n log n) 

          Average Case=O (n log n)  

          Worst Case= O (n
2
) 

 

2.2.2 Advantages and Disadvantages 

2.2.2.1 Advantages 

 One of the fastest algorithms on average.  

 Does not need additional memory (the sorting takes place in the array-In-place processing). 

 The list is being traversed sequentially, which produces very good locality of reference and cache behavior 

for arrays.  
 

2.2.2.2 Disadvantages 

 Space used in the average case for implementing recursive function calls is O (log n) and hence proves to 

be a bit space costly, especially when it comes to large data sets.  

 The worst-case complexity is O(n
2
) . 

 

2.2.2.3 Applications 

Commercial applications use Quicksort as it runs fast, no additional memory, this compensates for the rare 

occasions when it runs with (O(n
2
).Never use in applications which require guaranteed response time. Life 

critical (medical monitoring, life support in aircraft and space craft), Mission-critical(monitoring and control in 

industrial and research plants handling dangerous materials, control for  aircraft ,defense, etc) unless you assume 

the worst-case response time. 

 

C. Shell Sort 

Shell sort is a sorting algorithm, devised by Donald Shell in 1959, that is a generalization of insertion sort, 

which exploits the fact that insertion sort works efficiently on input that is already almost sorted. It improves on 

insertion sort by allowing the comparison and exchange of elements that are far apart. The last  step  of  Shell  

sort  is a  plain insertion  sort[2],  but  by  then, the  array  of  data is  guaranteed  to  be  almost sorted. The  

algorithm  is  an  example  of  an  algorithm  that  is  simple  to  code  but  difficult  to  analyze theoretically. 

Although  Shell  sort is  easy  to  code,  analyzing  its  performance  is  very  difficult  and  depends  on  the 

choice of increment sequence. The algorithm was one of the first to break the quadratic time barrier, but this fact 

was not proven until some time after its discovery. The  initial increment  sequence  suggested  by  Donald  

Shell was [1,2,4,8,16,...,2k],  but  this  is a  very poor choice in practice because it means that elements in odd 

positions are not compared with elements in even  positions  until  the  very last  step.  The original 

implementation [1] performs O (n2) comparisons and exchanges in the worst case. A simple change, replacing 

2k with 2k-1, improves the worst-case running time to O(N3/2) , a bound that cannot be improved. Shell sort 

first moves values using giant step sizes, so a small value will move a long way towards its final position, with 

just a few comparisons and exchanges.  
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The principle of Shell sort is to rearrange the file so that looking at every hth element yields a sorted file. We 

call such a file h-sorted. If the file is then k-sorted for some other integer k, then the file remains h-sorted. For 

instance, if  a list  was  5-sorted  and then  3-sorted,  the  list  is now  not  only  3-sorted,  but both  5 and 3 

sorted. The  algorithm  draws  upon  a  sequence  of  positive  integers  known  as  the  increment  sequence.  

Any sequence  will  do,  as  long  as  it  ends  with  1,  but  some  sequences  perform  better  than  others. The 

algorithm begins by performing a gap insertion sort, with the gap being the first number in the increment 

sequence.  It  continues  to  perform  a  gap  insertion  sort  for  each number in  the  sequence,  until  it  finishes 

with a gap of 1. When the increment reaches 1, the gap insertion sort is simply an ordinary insertion sort, 

guaranteeing that the  final  list  is  sorted.  Beginning  with  large  increments  allows  elements  in the  file  to 

move  quickly  towards  their  final  positions,  and  makes  it  easier  to  subsequently  sort  for  smaller 

increments. Although  sorting  algorithms  exist  that  are  more  efficient,  Shell  sort  remains  a  good  choice  

for moderately large files because it has good running time and is easy to code. 

Shell Sort represents a "divide-and-conquer"[6] approach to the problem. 

That is, we break a large problem into smaller parts (which are presumably more manageable), handle each part, 

and then somehow recombine the separate results to achieve a final solution. In Shell Sort, the recombination is 

achieved by decreasing the step size to 1, and physically keeping the sublists within the original list structure.  

 

2.3 Algorithm 

Input: An array a of length n with array elements numbered 0 to n − 1  

        inc ← round(n/2)  

           while inc > 0 do:  

                    for i = inc .. n − 1 do:  

                          temp ← a[i]  

                           j ← i  

                           while j ≥ inc and a[j − inc] > temp do:  

                                    a[j] ← a[j − inc]  

                                     j ← j − inc  

                                    a[j] ← temp  

             inc ← round(inc / 2.2) 

The increment sequence is a geometric sequence in which every term is roughly 2.2 times smaller than the 

previous one. 

An Example 

Sort:    18   32   12   5   38   33  16  2 

8 numbers to be sorted, shell‟s increment will be floor (n/2) 

*floor(8/2) floor(4)=4 

Increment 4: 1       2         3        4       (visualize coloring) 

                     18   32       12      5        38        33        16       2 

Step 1) Only look at 18 and 38 and sort in order . 

18 and 38 stays at its current position because they are in order. 

Step 2) Only look at 32 and 33 and sort in order .  

32 and 33 stays at its current position because they are in order. 

Step 3) Only look at 12 and 16 and sort in order .  
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12  and 16 stays at its current position because they are in order. 

Step 4) Only look at 5 and 2 and sort in order . 

2 and 5 need to be switched to be in order. 

Resulting numbers after increment 4 pass:  

18    32   12   2    38    33    16    5 

* floor(4/2)  floor(2) = 2 

Increment 2: 1    2 

18 32 12 2 38 33 16 5 

Step 1) Look at 18, 12, 38, 16 and sort them in their appropriate location: 

12 38 16 2 18 33 38 5  

Step 2) Look at 32, 2, 33, 5 and sort them in their appropriate location: 

12 2 16 5 18 32 38 33  

Resulting numbers after increment 2 pass:  

12    2    16     5     18    32       38    33     

* floor(2/2)  floor(1) = 1 

Increment 1: 1 

12 2 16 5 18 32 38 33  

2 5 12 16 18 32 33 38  

The last increment or phase of Shellsort is basically an Insertion Sort algorithm. 

 

2.3.1 Analysis 

Efficiency of shell sort depends on the values of increment h. In Shell's original sequence h is N/2 , N/4,..1 

(repeatedly divide by 2),Hibbard's increments are 1,   3,   7,., 2k - 1 ,Knuth's increments[2] are 1, 4,13,, ( 3k - 1)/ 

2.Start with 1,then multiply by 3 and add 1.This takes less than O(n3/2) comparisons and  Sedgewick's 

increments:1, 5, 19, 41, 109, .... 9 ·4k - 9 ·2k + 1   or     4k - 3 ·2k + 1.Shellsort's worst-case performance using 

Hibbard's increments is Θ(n3/2).  The average performance is thought to be about  O(n 5/4) .The exact 

complexity of this algorithm is still being debated .This is better for mid-sized data  nearly as well if not better 

than the faster (n log n) sorts. The Shell‟s original sequence is treated as a Bad sequence because elements in 

odd positions are not compared to elements in even positions until the final pass. Shellsort does less than 

O(N(log N)
2
) comparisons for the increments  1 2 3 4 6 9 8 12 18 27. . .Analysis is complicated. Increments 

should be relatively prime (i.e., share no common factors). This guarantees that successive passes intermingle 

sublists so that the entire list is almost sorted before the final pass. With well-chosen increments, efficiency can 

approach O(N(logN)(logN)) or N logN-squared. Its general analysis is an open research problem. Performance 

depends on sequence of gap values like  for sequence 2k, performance is O(n
2
) Hibbard‟s sequence (2k-1), 

performance is O(n3/2) We start with n/2 and repeatedly divide by 2.2 Empirical results show this is O(n5/4) or 

O(n7/6).No theoretical basis (proof) that this holds. 
 

2.3.2 Advantages and Disadvantages 

2.3.2.1 Advantages 

 Only efficient for medium size lists. 

 5 times faster than the bubble sort and a little over twice as fast as the insertion sort, its closest competitor.
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2.3.2.2 Disadvantages 

 It is a complex algorithm and its not nearly as efficient as the merge, heap, and quick sorts. 

 It is significantly slower than the merge, heap, and quick sorts. 

 

2.3.3 Applications 

Shell sort is now rarely used in serious applications. It performs more operations and has higher cache miss  

ratio than quicksort. However, since it can be implemented using little code and does not use the call stack, 

some implementations of the qsort function in the C standard library targeted at embedded systems use it instead 

of quicksort. Shellsort is, for example, used in the uClibc library. For similar reasons, an implementation of 

Shellsort is present in the Linux kernel.Shellsort can also serve as a sub-algorithm of introspective sort, to sort 

short subarrays and to prevent a pathological slowdown when the recursion depth exceeds a given limit. This 

principle is employed, for instance, in the bzip2 compressor.  

 

III. COMPARITIVE STUDY OF ALGORITHMS 

 

Table I-Complexity Comparison 

Algorithm  Stable Best time Average time Worst time Extra memory 

Shellsort No O(n*log(n)) O(n
1.25

)
†
 O(n

1.5
) O(1) 

Quicksort No O(n*log(n)) O(n*log(n)) O(n
2
) O(log(n)) 

Mergesort Yes O(n*log(n)) O(n*log(n)) O(n*log(n)) O(n)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: Complexity Statistics 

Sorting analysis summary 

Running time estimates: Home PC executes 10
8
 comparisons/second Supercomputer executes 10

12
 

comparisons/second. 

http://en.wikipedia.org/wiki/CPU_cache#Cache_miss
http://en.wikipedia.org/wiki/CPU_cache#Cache_miss
http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Call_stack
http://en.wikipedia.org/wiki/Qsort
http://en.wikipedia.org/wiki/C_standard_library
http://en.wikipedia.org/wiki/Embedded_systems
http://en.wikipedia.org/wiki/UClibc
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Introsort
http://en.wikipedia.org/wiki/Bzip2
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IV. CONCLUSION 

 

In this paper, we got into sorting problem and investigated different solutions.  We talked about the most 

popular sorting algorithms using the divide and conquer strategy. They are: Merge sort, Quick sort and Shell 

sort. Algorithms were represented with perfect descriptions and examples. Also, it was tried to indicate the 

computational complexity of them in the worst, middle and best cases along with the applications and pros and 

cons. At the end, we can analyze that Merge sort can be used for huge randomly ordered files of small records 

but with a little bit of memory requirements. On an average Quick sort is the best unless you assume the worst-

case response time. Shell sort is recently replacing some of the quick sort applications due to its little code and 

no recursion. Finally we can conclude that Good algorithms are better than supercomputers but great algorithms 

are better than good ones. 
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