International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No.03, Special Issue No. 02, February 2015 ISSN (online): 2348 — 7550

IMPACT OF SIZE AND PRODUCTIVITY ON
TESTING AND REWORK EFFORTS FOR NON-WEB-
BASED DEVELOPMENT PROJECTS

"Mridul Bhardwaj, *Prof (Dr.) Ajay Rana

L2Amity School of Engineering and Technology, Amity University, Noida UP, (India)

ABSTRACT

In project planning of any software development project, major challenge faces by project managers is to predicate
the amount of re-work required to deliver the software that not only meets time and cost requirements but also the
quality requirements given by client. To ensure the quality of the software, many iterations of testing cycle
conducted before it final delivered to client for acceptance. Each testing cycle is a very costly affair as it involves
running all possible test scenarios in all possible user environments and followed by defect fixing and re-verification
of defects. On an average, there are 2-3 iterations of testing cycle conducted but this depends on number of defects
identified during testing. Number of defects will depend on the expertise and experience of the team to work on
similar type of projects and technology. Hence it become very critical to predict and control the numbers of defects
identified during testing but this is very challenges task as it requires a good predicating model to predict the re-
work effort.In this paper, we describe the relationships among software size, number of software defects,
productivity and efforts for non-web-based development projects. These relationships are established by using the
multiple linear regression technique on the benchmarking data published by International Software Benchmarking
Standard Group.Results suggest that lower productivitywill led to more number of defects; therefore, non-web-based
project should be planned with experience resources who have earlier worked on similar projects and technologies.
It will help in reducing the number of defects and rework efforts. Executing non-web based project with experience
team require less time for development and most of the defect can be identified during unit testing and this will
directly contribute in reducing the rework efforts. Relationship among defect, size and efforts also suggest that size
has a significant impact on the total number of defects in comparison to efforts. Change in unit software size will
have bigger impactin comparison to unit change in effort. So study also infer that while planning the software
project we should use appropriate tools to reduce the margin of error in size estimation and we should re-estimate
the size, after every phase of development life cycle, to re-calibrate overall efforts and to minimize the impact on the
project plan.

Keywords: Re-Work Efforts, Software Size, Productivity, Defects, Software Quality, Software Cost,

Project Delivery Rate, Multi Liner Regression, Non-Web Bases Project.

153|Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No.03, Special Issue No. 02, February 2015 ISSN (online): 2348 — 7550

1 INTRODUCTION

In the planning of any software development project, one of the major challenge faced by project managers is to
predict the amount of rework required to deliver the software that not only meets time and cost requirements but also
the quality requirements given by the client. To ensure the quality of the software, many iterations of the testing
cycle are conducted before it is finally delivered to the client for acceptance. Each testing cycle is a costly affair as it
involves running all possible test scenarios in all possible user environments, followed by defect fixing and re-
verification of defects. Typically the test cycles ends when there is no defect to be identified during the test cycle.
On an average, two to three iterations of the testing cycle are conducted but this depends on the number of defects
identified during testing. The number of defects will depend on the expertise and experience of the team
(productivity) to work on similar type of projects and technology. Therefore, it becomes critical to predict the
numbers of defects identified during testing and this is a very challenging task as it requires a good model to predict
the rework effort. To predict the rework effort we should first estimate the overall size of the software being
developed, hence, size estimation becomes the most important first step to plan software project. Importance of
software size is explained in my paper “Estimate Software Functional Size before Requirement phase of

Development Life Cycle” [12]. Below paragraph and section 1.1 to section 1.3 are the extracted from that paper.

Imagine driving on an important trip to a distant place you have not been before. No-one will feel comfortable to
start such a journey without knowing at least general direction of the destination e.g. distance, the available routes,
road condition etc. Armed with this Information and a good map one can feel more comfortable about taking the
trip. These are essential; however your comfort may be seriously compromised during the journey. Road works can
hit you badly, but at least you have a good chance of having early warning, if you think to check. A puncture or a car
fault can be less predictable, but they do happen. Managing a Software project is much harder than planning a trip.
The biggest difference is that no matter how hard you try, the specification are not static and also challenges in
predicting team productivity and quality of end product i.e. no of defects. The biggest challenge with the Software
project is to define the size of the overall application as the requirements are not always provided in structured form.
There are two type of Software sizing one is based on Functional Size (user perspective) and other is technical Size
(developer perspective e.g. KLOC) but technical sizing cannot be used to compare functionality provided by
software application. With user point of view, software providing the same functionality will be treated similar
irrespective of the technology used so functional size is the only independent variable that not only can be used to
compare the software but also to plan software development. There are various Functional Size measurement are
available to measure the software functional size but all these methods require detail understanding of functionality
but most of time detail understand of requirement available only after completion of requirement phases so the
challenge remain to measure the software functional size before the requirement phase. Let’s first understand how to

define the successful project.

154|Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No.03, Special Issue No. 02, February 2015 ISSN (online): 2348 — 7550

1.1 What Determines a Successful Software Project?

Time, Cost and Quality are key Success parameters to determine if project is successful or not [7]. There are other
criteria of course; however these are generally additional to the Time, Cost and Quality criteria. In any project,
these are three conflicting factors: These are often viewed as a triangle (see Figure 1). One cannot for example
lessen the duration without affecting cost and/or quality. In software engineering terms, functionality is the
counterpart for quality, while duration and cost are still applicable. The correctness of the code (lack of bugs) is
bundled into quality for simplicity. The attributes we consider for software projects are Effort and Schedule. If these

are available and controlled, then the cost and time can also be defined and controlled.

Duration

Cost Quality

Figure 1 Conflicting Triangle

Duration is the total number of time units (e.g. weeks or months) needed to complete the project. This may break
down to effort from more than one person, so as to take advantage of certain skills and parallelize the work to gain
overall time. We can reduce the duration by putting more resources but the caveat here is that the more people one
adds to a project then more one needs to work so as to coordinate them and the more they communicate so as to
interact successfully, thus yielding overheads. This coordination may also lead to occasional idle periods of some of
these people. Schedule is sometimes associated with the total time for the project; however the term usually includes
the breakdown of effort per person at any given time, so as to track the coordination issues. It is a fact that the

schedule is derived from effort

1.2 Software Size, Efforts and Productivity

Software sizing is an important activity in software engineering that is used to estimate the size of a software
application or component in order to estimate other software project characteristics like efforts, schedule,
resources, defects etc. Size is an inherent characteristic of a piece of software just like weight is an inherent
characteristic of a tangible material. Size is not efforts, it is essential to differentiate between software sizing and
software effort estimation. Measuring the size of a piece of software is different from measuring the effort needed to
build it. There are two type of Software sizing one is based on Functional Size (user perspective) and other is

technical Size (developer perspective)[1] but technical sizing cannot be used to compare functionality provided by

155|Page

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Component
http://en.wikipedia.org/wiki/Software_project_management
http://en.wikipedia.org/wiki/Weight
http://en.wikipedia.org/wiki/Estimation_in_software_engineering
http://en.wikipedia.org/wiki/Work_(project_management)

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No.03, Special Issue No. 02, February 2015 ISSN (online): 2348 — 7550

software application. With user point of view, software providing the same functionality will be treated similar
irrespective of the technology used so functional size is the only independent variable that not only can be used to
compare the software but also to plan software development.Functional Size is an independent measure and it does

not depend on technology while effort will depend on many factors. (See Figure 2).

l Estimarte Size }

Apply Productivity i
(Effort = Size * Productivity Organization

Process
database

[Adjust Productivity Factor }

| Final Estimated Efforts |

Figure 2 Driving Efforts Using Size and Productivity

Functional Size Measurement is the most accepted approach to measuring the size of software functional size. There
are various sizing methods available like IFPUG function points, COSMIC, NASMA function points etc. but these
standard functional size methods are not very suitable to be used in early stage of software life cycle as they require
structured analysis of user requirements.[2] Functional size measurement are simple in concept but they are not easy
to apply specially in early stage of software development e.g. in proposal stage where not much scope is defined and
clear to carry out detail sizing analysis. An accurate estimate of software size is an essential element in the
calculation of estimated project costs and schedule. The fact that these estimates are required very early on in the
project (often while a contract bid is being prepared) makes size estimation a formidable task. Initial size estimates
are typically based on the known system requirements. We must hunt for every known detail of the proposed

system, and use these details to develop and validate the software size estimates.

. Rleg 4

P | cone
arsiiae

z Cov

Figure 3

sy
fr s ——) [

Cakendate e
LR

In general, we present size estimates as lines of code (KSLOC or SLOC), function points, uses case count, object
count. Selection of sizing unit depends on the nature of the project and also the form in which requirements are
presented. Regardless of the unit chosen, we should store the estimates in the metrics database and use these
estimates to determine project progress and to also to estimate future projects. As the project progresses, revise them
so that cost and schedule estimates remain accurate and corrective action can be taken if required. There are various
scientific methods for calculating the software size that can be used based on the project type.

Productivity can be defined as average efforts required to deliver unit size. [3]

156 |Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No.03, Special Issue No. 02, February 2015 ISSN (online): 2348 — 7550

1.3 Early Approximation of Functional Size using Logical Data Model

IFPUG functions point count following functional component types [4].

Internal Logical Files (ILF) — Logical Business entities used to store data within the boundary of software.
External Interface Files (EIF) - Logical Business entities referred by Software, Software is not the owner of
these entities but these are owned by other software outside the boundary of Software.

External Inputs (EI) —Process insert data to be stored in ILF.

External Outputs (EO) - Process that extract data from ILF or EIF and derived to generate report to be sent outside
the boundary of software.

External Query (EQ) - Process that extract data from ILF or EIF and generate report (with no derived data) to be

sent outside the boundary of software

_External Interface
/ Fies
L

Figure 4 Distribution of Function Points Component in overall Size

Based on the ISBSG data [5], distribution of these five entities are shown in the above pie chart (figure 4). If we can
drive the number of internal logical files using the data model, we can approximate the size of the Software. For
example if there are 10 internal logical file identified software size can be estimated using the following calculation.
Software size = Number of ILF * 8.6 (mean score of internal logical file) * 4 (as ILF contribute only 25% in total
software size as per the pie chart above)

Software size = 10*8.6*4 =344 Function points.

Similarly if we know the number of reports or output generated by the software then we can we can also

approximate the size as reports contribute 40% of the total software size.

11 OBJECTIVE

The objective of this study is to perform extensive data analysis towards developing a more in-depth understanding
of impact of functional size and productivity on the testing and rework effort non-web basedprojects, and eventually
facilitating strategic planning by to control these factors. Hence, the key objectives of the study for this paper are:

e Isthere any relation between productivity and defects injected?

e How functional size impact the overall rework effort?

e How functional size impact the overall testing efforts?

e How productivity impact the testing efforts ?

157 |Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No.03, Special Issue No. 02, February 2015 ISSN (online): 2348 — 7550

2.1 Data Source

Data used in this study is taken from Benchmarking Release 10 by the International Software Benchmarking
Standard Group (ISBSG). The ISBSG established in 1994 a not for profit organization that has been established to
improve the global understanding of software practices, so that they can be better managed. ISBSG has gathered on
4,106 software projects from around the world, and made available on Release 10 of Estimating, Benchmarking &
Research Suite CD.

2.2 Unit of Key Metrics

......... IFPUG - Unadjusted
Function Points (UFF)

-------- ‘-Ef'fon Psrscm hour
Table 1

2.3 Approach

ISBSG has published Mean and Standard deviation of Size, Productivity (Product delivery rate) and Defect data for
Non-web based. These data is shown in Table 2.

Non-Web Bazsed New !

...................................... L
... -
]

... 4

Assuming data is normally distributed; following steps were followed to generate data
First generate value for Software Size that is independent variables, by generating positive random variables in the
range of 0-1000 (Figure 5)

S =y

|

el [y Lo |
; '\}.’1”*"": _‘ w*v.‘,M,r ‘M\;‘W W “.‘J’lf‘lv) W ”l

Figure5

Total efforts calculated after multiply size with PDR (Figure 6)

158 |Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No.03, Special Issue No. 02, February 2015 ISSN (online): 2348 — 7550

Rt Parsnn Mot

Lp- 7 g”u.."\l:,’*,J Ul',\.ﬁ A V,A ~' M\ L‘U ' ' M ﬁ' Nl .} 5’ J/‘l Y \\,

Figure 6

Defect data is also generated based on defect statistics as per table 2 and assuming it is also normally distributed.
(Figure 7)

Total Defects _"_E I

JM»I ' A #“W‘ fw*-‘r |ﬂ|’m“ 'M 3“

Figure 7

For each data points of size generate value for Productivity / PDR (Product Delivery Rate) based on value mean and
standard deviation value as per table 1 after assuming it is normally distributed. Statistical Software MINITAB

Release 14 has been used to generate the Value for Normal distribution

111 EXPERIMENT RESULTS

Assuming number of defects logically depends on Size, Productivity and Total efforts e.g. Bigger the size higher the
number of defect , similarly by more efforts we increase chance of injecting more defects. We tried to establish
relationship between number of defect, Size, PDR, Efforts, using Multi linear Regression equation. Following multi

liner equations are established based.

Total defects = —11.3 — 0.000272 Ef forts + 0.0529 Size + 0.338 PDR (1)

It is clear from the above equation that Software size play a pivot role to determine the estimated number of defects,
hence, it is very important to estimate software size even if there is very high level software requirements are

available.

IV CONCLUSIONS

From the equation 1 , we can infer that higher productivity (means lower value for PDR) will led to the less number
of defects so non-web based project should be planned with much experience team(higher productivity) so that we
should have less defect and rework. (Please remember that cost of rework is much higher than cost of development).
Relationship among defect, size and efforts also suggest that size has much significant impact on total number of
defect in comparison to efforts. In multi linear regression equation size co-efficient is much higher than the efforts

co-efficient that means size has much significant impact on total number of defect in comparison to efforts.Change

159 |Page

International Journal of Advanced Technology in Engineering and Science www.ijates.com
Volume No.03, Special Issue No. 02, February 2015 ISSN (online): 2348 — 7550

in unit size will have bigger impact in comparison to unit change in effort. So study conclude that while planning the

software project we should use appropriate tools to reduce the margin of error in size estimation and we should re-

estimate the size, after every phase of development life cycle, to re-calibrate overall efforts and to minimize the

impact on the project plan.

REFERENCES

[1] Jorgensen, M. and Boehm, B. “Software Development Effort Estimation: Formal Models or Expert
Judgment?” IEEE Software, March-April 2009, pp. 14-19

[2] Jorgensen, M. and Shepperd, M. “A Systematic Review of Software Development Cost Estimation
Studies,” IEEE Trans. Software Eng., vol. 33, no. 1, 2007, pp. 33-53

[3] Peter R. Hill “Practical Software Project Estimation, A Tool Kit for Estimating Software Development
Effort and Duration” by McGraw-Hill (2011)

[4] International Function Points Users Groups (IFPUG): Supports and maintains the IFPUG methods (release
4.3): www.igpug.com

[5] ISBSG “The Benchmark data for Software estimation” Release 10 (2011)

[6] Object-Oriented Software Development Effort Prediction Using Design Patterns from Object Interaction
Analysis Systems (ICONS), 2010 Fifth International Conference on Adekile, O.; Simmons, D.B.; Lively,
W.M.;

[7] Essential Metrics for Outsourcing Testing Services, Analyst(s) by Gilbert van der Heiden - 2011

[8] Peter R. Hill “Practical Software Project Estimation, A Tool Kit for Estimating Software Development
Effort and Duration” by McGraw-Hill (2011)

[9] Phase Distribution of Software Development Effort by Ye Yang, Q ing Wang &Mingshu Li (Institute of
Software, Chinese Academy of Sciences, China), Mei He (Graduate University of Chinese Academy of
Sciences, China) & Barry Boehm (University of Southern California, USA)- 2008

[10] Software Engineering — A Practitioner’s Approach — Roger S. Pressman, Fifth Edition Published by
McGraw-Hill

[11] UKHEC Report on Software Estimation - K. Kavoussanakis, Terry Sloanm The University of Edinburgh —
2010

[12] Mridul Bhardwaj and Ajay Rana “Estimate Software Functional Size before Requirement phase of

Development Life Cycle” International Journal of Innovations & Advancement in Computer Science, vol. 3

Issue 4 June-2014, pp 79-83

160|Page

