
International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No 03, Special Issue No. 01, March 2015 ISSN (online): 2348 – 7550

599 | P a g e

DETECTION AND PREVENTION OF TAUTOLOGY

AND UNION QUERY BASED SQL INJECTION

ATTACKS

Jyoti Agrawal
1
, Mukesh Gupta

2

1,2
Dept. of Computer Science, SKIT, (India)

ABSTRACT

Web applications are pervasive and play a vital role as web applications are significant mode of communication.

SQL injection is one of the most dangerous security vulnerability that is exploited in web application by attacker to

get the access of databases. This paper proposes a method SQL idetection and algorithm to detect and prevent the

tautology and union query based attacks at run time. To demonstrate efficiency of this method dataset is taken from

NIST.

Keywords: Detection, Input Validation, Prevention, SQL Injection Vulnerability, SQL Injection

Attacks

I INTRODUCTION

At present time the use of web applications is increasing rapidly. We are using web applications in daily life in the

different ways such as shopping, mailing, downloading-uploading various videos and audios, virtual network (social

networking sites) etc. Web applications store information in databases that is to be delivered to legitimate customer,

supplier or other host. Since a number of dangerous security vulnerabilities are present in these web applications,

these web applications become prone to attacks and an attacker in that way can make malicious attacks. One of these

attacks is SQL injection attack that gives a chance to attackers to amend the behavior of system by exploiting these

vulnerabilities. Therefore the requirement to identify these vulnerabilities is raised.

Many researchers and practitioners are working to detect SQL injection attacks from crucial web applications. For

this purpose they are applying several input validation and sanitization methods in their approaches [1], [2], [3], [4],

[5]. NTAGW ABIRA Lambert and KANG Song Lin have proposed a method [7] called queryParser method. This

method tokenizes the original query and query with injection after tokenization the indices of tokens is stored in two

arrays. Then the length of both array are compared if lengths are equal then there is no injection else there is

injection. This method will produce false positives because if user enters invalid input which does not result in

SQLIA for example for user input “CH01 ASE” this method will print there is an injection because the length of

original query and query with injection is not same.

The proposed approach is able to detect and prevent the web applications from tautology and union query based

SQL injection attack in a simple and manner without applying any sanitization and filtering.

http://www.ijates.com/

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No 03, Special Issue No. 01, March 2015 ISSN (online): 2348 – 7550

600 | P a g e

The rest of this paper is outlined as follows. Section 2 describes SQL injection with tautology and union query based

SQLI attacks, section 3 demonstrates our approach and section 4 presents empirical evaluation of our approach. At

last section 5 talks about the conclusion and future work in this direction.

II SQL INJECTION

OWASP (Open Web Application Security Project) has reported that SQL injection is one of top10 vulnerabilities.

SQL Injection (SQLI) attack is one in which an unauthorized user gets access to unprivileged data. Since the web

applications suffer from improper input validation. This lack of proper user validation allows attacker to find

injectable fields to exploit vulnerabilities. After succession in attack an attacker can manipulate the valid user‟s data

without knowledge to that user.

2.1Tautology Attack

In tautology-based attack attacker injects code in one or more conditional statements so that they always evaluate to

true. Consider a website‟s page in which SQL query is dynamically created and includes user input fields. The

following query is used for fetching information about books:

“SELECT * FROM books WHERE authorname= „ “ + authorname + “ „ “;

In a general way this web page having one user input field authorname which have the valid entries as stored in its

database.But an attacker can enter the malicious inputs in user input field as authorname: anything‟ or `x‟=`x then

resultant query will have following form:

“SELECT * FROM books WHERE authorname = „anything‟ or `x‟=`x‟”

In this way resulting query will allow the attacker to access the complete table without actually knowing a valid

authorname because in this WHERE CLAUSE is always true.

2.2Union Query Based Attack

In this type of attack an attacker uses a vulnerable parameter to modify the data set returned for a given query. This

is done by injecting a UNION SELECT statement. This additional query allows an attacker to fetch the data from a

specified table by getting the rights and privileges of authorized user. For example let an attacker can inject the

string “‟ UNION SELECT creditcardno, pinno FROM creditcard” into the newsid field. Therefore resultant query

is:

SELECT newstitle, newsbody FROM news WHERE newsid = '340' UNION SELECT creditcardno, pinno FROM

creditcard

In this dynamic illegitimate query statement the first part returns two attribute values of newstitle and newsbody

corresponding to newsid 340 along with this the second query returns data from the “creditcard” table because the

result that is returned is the union of both original and injected query statement.

III OUR APPROACH

This approach is able to detect and prevent the web applications from those SQL injection attacks that results in

stealing the crucial data from database. When a web application is vulnerable to attacks, in such a manner that a

http://www.ijates.com/

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No 03, Special Issue No. 01, March 2015 ISSN (online): 2348 – 7550

601 | P a g e

malicious user can inserts some malicious input instead of original required input in user input field willing to fetch

data from database for which that user is not authenticated. Then the SQL query statement formed by user input

becomes an illegitimate SQL query statement and then the execution of this illegitimate statement will fetch data

from database. Proposed approach will detect that there is an attack if the web application fetches data from database

even if user entered wrong input or malicious input and then this approach will prevent these data from attacker‟s

eye by not displaying the fetched data.

Our approach consists of implementation of a function called SQLIdet() to detect if there is an SQL injection or not.

Major components of this approach are as in Fig.1.

Fig.1: Block diagram of proposed method

This proposed technique follows following algorithm that has 3 basic steps which are as follows:

Inputs:

SQLo: Original query

SQLn: Query created for selecting user input fields

$resulto: result variable of SQLo

$resultn: result variable of SQLn

$Ui: user inputs

$indexi: user input field index of each Ui

Output:

Result of SQLI

Steps:

1. Execute SQLo and Execute SQLn

2. Call function SQLIdet() with parameters $resulto, $resultn, Ui and $indexi

3. Execution of function

i. Compute no. of rows in $resultn

Execution of

SQL queries

SQLidetection

method

Comparison User input

Result about

SQL injection

attack

Data from

database

http://www.ijates.com/

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No 03, Special Issue No. 01, March 2015 ISSN (online): 2348 – 7550

602 | P a g e

ii. If no. of rows>0 then

a. Fetch first row of $resultn from database

b. Compare fetched data of $indexi column with Ui

c. If both matches

d. Then perform required action

e. Else print “injection”

iii. Else return

4. End

To understand how actually this technique works consider an example in which a legitimate user enters “Emile

Zola” in user input field “author” or any other valid author name. Resultant query for this input is:

“SELECT * from books

WHERE author=‟Emile Zola‟”

Then the query is executed and then proposed SQLidet() function is called in which this query‟s result which is 3
rd

row of database and index of user input field that is author are passed. Then it fetches result in a variable and

compares input entered by user with the fetched value of passed index. For taken example both the values input

entered by user “Emile Zola” and row [author] = Emile Zola fetched from database matches. So there is no injection

and required action is performed.

If user input is a crafted input then it performs the same process and when entered user input does not matches with

database entry then it reports that there is an injection. For example an illegitimate user enters “anything‟ or „x‟=‟x”

then after executing the resultant query it selects complete database as it is a form of tautology attack. But when this

function is called it compares “anything‟ or „x‟=‟x” with each entry in author column fetched from database one by

one and since this is an invalid user input it does not match and this function reports that there is an injection. In

such a way this technique works at run time.

3.1 Empirical evaluation

To evaluate proposed approach consider one example of query present in test case 1940 of NIST benchmarks [6] the

records and structure of table book of this test case is presented by Table 1 and Table 2 respectively. The original

query is

“SELECT * FROM books WHERE Author = ‟$q‟”;

Where „q‟ is the user input „author‟ when an illegitimate user enters anything’ or ‘x’=’x an invalid input string

willing to get unauthorized information. When SQLidet() method discussed in section 3 is applied on this test case

then the result produced after applying this attack will be same as shown in Fig.2.

Since taken example is a tautology type SQLIA. Similar to this when this approach is applied to union query based

attack then also the attack will be detected and web application will be prevented.

http://www.ijates.com/

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No 03, Special Issue No. 01, March 2015 ISSN (online): 2348 – 7550

603 | P a g e

Table 1

Structure of table book

Table 2

Records of table book

Fig.2: Result of proposed method

IV CONCLUSION AND FUTURE WORK

The method proposed in this paper is robust and more efficient as this method produces no false positive and no

false negative. The proposed method is easy to understand and implement. This method requires no filtering and any

sanitization approach to validate use input.

In future this technique can be enhanced to detect other SQL attacks and can also be extended to include different

web applications attacks.

REFERENCES

[1] T. Scholte and W. Robertson, Preventing Input Validation Vulnerabilities in Web Applications through

Automated Type Analysis, IEEE 36th International Conference on Computer Software and Applications

(COMPSAC), 16 July 2012, 233-243.

[2] M. Ghafari, H. Shoja and M. Y. Amirani, Detection and Prevention of Data Manipulation from Client Side In

Web Applications, IEEE 11th International Conference on Trust, Security and Privacy in Computing and

Communications, 2012, 1132-1136.

[3] M. Alkhalaf, T. Bultan and Jose L. Gallegos, Verifying Client-Side Input Validation Functions Using String

Analysis, IEEE 34th International Conference on Software Engineering (ICSE), June 2012, 947-957.

http://www.ijates.com/

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No 03, Special Issue No. 01, March 2015 ISSN (online): 2348 – 7550

604 | P a g e

[4] R. B. Brinhosa, C. M. Westphall, C. B. Westphall, D. R. dos Santos and F. Grezele, A Validation Model of

Data Input for Web Services, The Twelfth International Conference on Networks, ISBN: 978-1-61208-245-5,

2013.

[5] W. Min and L. Kun, An Improved Eliminating SQL Injection Attacks Based Regular Expressions Matching,

IEEE International Conference on Control Engineering and Communication Technology (ICCECT), 2012,

210-212.

[6] NIST, SAMATE Reference Dataset, http://samate.nist.gov/.

[7] N. A. Lambert and K. S. Lin, Use of Query Tokenization to detect and prevent SQL Injection Attacks, 3rd

IEEE International Conference on Computer Science and Information Technology (ICCSIT), vol.-2, July

2010, 438-440.

[8] E. Merlo, D. Letarte, G. Antoniol, Insider and Ousider Threat-Sensitive SQL Injection Vulnerability Analysis

in PHP, IEEE 13th Working Conference on Reverse Engineering, 2006.

http://www.ijates.com/

