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ABSTRACT  

The present paper deals with a common fixed point theorem for six self maps which 

generalizes the result of Pant and Chauhan [9] , using the concept of  compatibility of type ( ) 

in Menger space. 
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I. INTRODUCTION 

 

Jungck and Rhoades [6] termed a pair of self maps to be coincidentally commuting or equivalently weakly 

compatible if they commute at their coincidence points. Sessa [13] initiated the tradition of improving 

commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces.  

Jungck [5] soon enlarged this concept to compatible maps.  Menger [7] introduced the notion of probabilistic 

metric space which is a generalization of metric space.  It is also of fundamental importance in probabilistic 

functional analysis. The development of fixed point theory in PM-spaces was due to Schweizer and Sklar [11]. 

Sehgal and Bharucha-Reid [12] obtained a generalization of Banach Contraction Principle on a complete 

Menger space which is a milestone in developing fixed-point theory in Menger space. 

The notion of compatible mapping in a Menger space has been introduced by Mishra [8].  Cho, Murthy and 

Stojakovik [1] proposed the concept of compatible maps of type (A) in Menger space and gave some fixed point 

theorems. Recently, using the concept of compatible mappings of type (A), semi-compatibility and occasionally 

weak compatibility in Menger space, Jain et. al. [2, 3, 4] proved some interesting fixed point theorems in 

Menger space. In the sequel, Patel and Patel [10] proved a common fixed point theorem for four compatible 

maps of type (A) in Menger space by taking a new inequality. 

In this paper a fixed point theorem for six self maps has been proved using the concept of  mappings of 

compatibility of type (). We also gave an example.  

 

II. PRELIMINARIES 

Definition 2.1.[7]  A mapping F : R R+ is called a  distribution if it is non-decreasing left continuous with  
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 inf { F (t) | t  R } = 0    and    sup { F (t) | t   R} = 1. 

We shall denote by L the set of all distribution functions while H will always denote the specific distribution 

function defined by  

  
0 , t 0

H(t) .
1 , t 0


 


 

Definition 2.2. [2] A mapping t :[0, 1] × [0, 1]  [0, 1] is called a t-norm  if  it  satisfies the following 

conditions : 

(t-1)   t(a, 1) = a,       t(0, 0) = 0 ; 

(t-2)   t(a, b) =  t(b, a) ; 

(t-3)   t(c, d)   t(a, b) ;     for c  a, d  b, 

(t-4)   t(t(a, b), c) =  t(a, t(b, c))  for all a, b, c, d [0, 1]. 

Definition 2.3. [2] A probabilistic metric space (PM-space) is an ordered pair (X, F) consisting of a non empty 

set X and a function F : X × X  L, where L is the collection of all distribution functions and the value of F at 

(u, v)  X × X is represented by  Fu, v. The function Fu,v assumed to satisfy the following conditions: 

(PM-1 ) Fu,v(x) = 1, for all x > 0, if and only if  u = v; 

(PM-2) Fu,v (0) = 0; 

(PM-3) Fu,v = Fv,u; 

(PM-4) If Fu,v (x) = 1 and Fv,w (y) = 1 then Fu,w (x + y) = 1, 

       for all u,v,w  X and x, y > 0.  

Definition 2.4. [2] A Menger space is a triplet (X, F, t) where (X, F) is a  PM-space and t is a t-norm such that 

the inequality 

(PM-5) Fu,w (x + y)  t {Fu, v (x), Fv, w(y) }, for all u, v, w X, x, y  0. 

Definition 2.5. [11] A sequence {xn} in a Menger space (X, F, t) is said to be convergent and converges to a 

point x in X if and only if for each  > 0 and  > 0, there is an integer M(, ) such that   

   Fxn, x () > 1 -   for all n  M(, ).   

Further the sequence {xn} is said to be Cauchy sequence if for  > 0 and   > 0, there is an integer  

M(, ) such that  

   Fxn, xm
() > 1-   for all m, n  M(, ).  

A Menger PM-space (X, F, t) is said to be complete if every Cauchy sequence in X converges to a point in X. 

A complete metric space can be treated as a complete Menger space in the following way : 

Proposition 2.1. [3] If (X, d) is a metric space then the metric d induces mappings F : X × X  L,  defined by 

Fp,q(x) = H(x - d(p, q)), p, q X, where  

  H(k) = 0,    for k  0   and   H(k) = 1,   for k >0. 

  Further if,  t : [0,1] × [0,1] [0,1] is defined by t(a,b) = min {a, b}.  Then (X, F, t) is a Menger space.  It is 

complete if (X, d) is complete. 

The space (X, F, t) so obtained is called the  induced Menger space. 
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Definition 2.6. [6] Self mappings A and S of a Menger space (X, F, t) are said to be weak compatible if they 

commute at their coincidence points i.e. Ax = Sx   for x X  implies  ASx = SAx. 

Definition 2.7. [8] Self mappings A and S of a Menger space (X, F, t) are said to be compatible if   

FASxn, SAxn
(x)  1 for all x > 0, whenever {xn} is a sequence in X such that Axn, Sxn  u for some u in X, 

as n . 

Definition 2.8. [1] Self maps S and T of a Menger space (X, F, t) are said to be compatible of type () if  

FSSxn, TTXn 
(x)  1 for all  x  > 0,  whenever {xn} is a sequence in X such that Sxn, Txn  u for some u in X, 

as n . 

Definition 2.9. [9] Self maps S and T of a Menger space (X, F, t) are said to be semi-compatible if FSTxn, Tu 

(x)  1 for all x  > 0,  whenever {xn} is a sequence in X such that Sxn, Txn  u for some u in X, as n . 

Now, the following example shows that the pair of self maps (I, L) are compatible of type () but not-semi-

compatible. 

Example 2.1. Let (X, d) be a metric space where X = [0, 2] and (X, F, t) be the induced Menger space with  

Fx,y = 
t

t d(x, y)
 for all t > 0. 

 Define self maps I and L as follows : 

 I(x) = x  for all x X   and  
x, if 0 x 1

L(x)
1, if 1 x 2.

 
 

 
    

Taking  n

1
x 1

n
   ,  we get  Ixn =  xn = 

1
1

n
    and Lxn = 

1
1

n
 . 

Thus,  Lxn     as n  and  Ixn   , as n . 

Hence,  x = 1   

Since Lxn = 
1

1
n

  

Therefore, ILxn = 
1 1

I
2 n

 
 

 
  =  

1
1

n
  

and      LLxn = 
1

L 1
n

 
 

 
  = 

1
1

n
 . 

Also,  IIxn =
1

I 1
n

 
 

 
 = 

1
1

n
 . 

Consider   1 1 1 1
n n 2 n 2 n

LLx ,IIx ,
n n
lim F (t) lim F (t)

 
 

 = 1  for t > 0. 

Therefore, by definition, (I, L) is compatible mapping of type (). 

Now,  1
n n

ILx ,Lx 1 ,1
n n
lim F (t) lim F (t)


 

  < 1  for t > 0. 

 Therefore, (I, L) is not semi-compatible mapping. Thus the pair  (I, L) of self maps is compatible of 

type () but not semi-compatible.  

Remark 2.2. In view of above example, it follows that the concept of compatible maps of type () is more 

general than that of semi-compatible maps.   
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Lemma 2.1. [15] Let {xn} be a sequence in a Menger space (X, F, t) with continuous t-norms t and t(a, a) a. If 

there exists a constant k(0, 1) such that Fxn,xn+1
(kt) Fxn-1, xn

(t) for all t 0 and n = 1, 2, 3, ..., then {xn} is 

a Cauchy sequence in X.  

Lemma 2.3. [15] Let (X, F , t) be a Menger space. If there exists a constant k (0, 1) such that  

 Fx, y(kt) Fx, y(t) for all x, y X and t > 0, then x = y.  

A class of implicit relation.  Let be the set of all real continuous functions  

: (R+)4 R, non-decreasing in the first argument with the property : 

a. For u, v 0,  (u, v, v, u) 0  or  (u,v,u,v)0 implies that u v. 

b. (u, u, 1, 1) 0 implies that u 1. 

Example 2.3. Define  (t1,t2,t3,t4) = 18t1 - 16t2 + 8t3 - 10t4.  Then . 

 

III. MAIN RESULT 

 

Theorem 3.1. Let A, B, L, M, S and T be self mappings on a complete Menger space  (X, F, t) with  t(a, a)  a,  

for some a  [0, 1], satisfying : 

(3.1.1)  L(X)   ST(X),  M(X)   AB(X); 

(3.1.2)  ST(X) and AB(X) are complete subspace of X; 

(3.1.3)  either AB or L is continuous;  

(3.1.4)   (L, AB) is compatible maps of type () and  (M, ST)  is weak compatible; 

(3.1.5)  for some , there exists k (0, 1) such that for  x, y X and t > 0,  

  (FLx, My(kt), FABx, STy(t), FLx, ABx(t), FMy, STy(kt))  0 

then  A, B, L, M, S and T have a unique common fixed point in X.   

Proof. Let x0  X.  From condition (3.1.1)    x1, x2  X  such that   

  Lx0 = STx1 = y0     and     Mx1 = ABx2 = y1.   

 Inductively, we can construct sequences {xn} and {yn} in X such that 

 Lx2n = STx2n+1 = y2n      and      Mx2n+1 = ABx2n+2 = y2n+1     

        for n = 0, 1, 2, ... .  

Step 1.  Putting  x = x2n and  y = x2n+1  in (3.1.5), we get 

 (FLx2n, Mx2n+1
(kt), FABx2n, STx2n+1

(t), FLx2n, ABx2n
(t), FMx2n+1, STx2n+1

(kt))  0. 

Letting n , we get 

 (Fy2n, y2n+1
(kt), Fy2n-1, y2n

(t), Fy2n, y2n-1
(t), Fy2n+1, y2n

(kt))  0. 

Using (a), we get 

 Fy2n, y2n+1
(kt)  Fy2n-1, y2n

(t). 

Therefore, for all n even or odd, we have 

 Fyn, yn+1
(kt)  Fyn-1, yn

(t). 

 Therefore, by lemma  2.1, {yn} is a Cauchy sequence in X, which is complete.  

 Hence {yn}  z X.  Also its subsequences converges as follows : 
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 {Lx2n}   z,   {ABx2n}     z,    {Mx2n+1}    z  and {STx2n+1}    z.  

Case I.   When AB is continuous. 

 As AB is continuous, (AB)2x2n   ABz  and  (AB)Lx2n   ABz. 

 As (L, AB) is compatible pair of  type (), so  

LLx2n   (AB)(AB)x2n  and so LABx2n ABz 

Step 2.  Putting  x = ABx2n  and  y = x2n+1  in (3.1.5), we get 

(FLABx2n, Mx2n+1
(kt), FABABx2n, STx2n+1

(t), FLABx2n, ABABx2n
(t), FMx2n+1, STx2n+1

(kt))  0 

Letting n , we get 

 (FABz, z(kt), FABz, z(t), FABz, ABz(t), Fz, z(kt))  0 

 (FABz, z(kt), FABz, z(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (FABz, z(kt), FABz, z(t), 1, 1)  0. 

Using (b), we get 

 FABz, z(t) = 1, for all t > 0, 

i.e. ABz = z. 

Step 3.  Putting  x = z  and y = x2n+1  in (3.1.5), we get 

 (FLz, Mx2n+1
(kt), FABz, STx2n+1

(t), FLz, ABz(t), FMx2n+1, STx2n+1
(kt))  0. 

Letting n , we get 

 (FLz, z(kt), FABz, z(t), FLz, ABz(t), Fz, z(kt))  0 

 (FLz, z(kt), 1, FLz, z(t), 1)  0. 

As is non-decreasing in the first argument, we have   

 (FLz, z(kt), 1, FLz, z(t), 1)  0. 

Using (a), we get 

 Fz, Lz(kt) = 1, for all t > 0,  

i.e.  z = Lz. 

Thus, we have z = Lz = ABz.   

Step 4.  Putting  x = Bz   and  y = x2n+1  in (3.1.5), we get 

 (FLBz, Mx2n+1
(kt), FABBz, STx2n+1

(t), FLBz, ABBz(t), FMx2n+1, STx2n
(kt))  0. 

Letting n , we get 

 (FBz, z(kt), FBz, z(t), FBz, Bz(t), Fz, z(kt))  0 

 (FBz, z(kt), FBz, z(t), 1,  1)  0. 

As is non-decreasing in the first argument, we have 

 (FBz, z(t), FBz, z(t), 1,  1)  0. 

Using (b), we have 

 FBz, z(t) = 1,  for all t > 0, 
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i.e. z = Bz. 

Since z = ABz, we also have 

 z = Az. 

Therefore, z = Az = Bz = Lz. 

Step 5.   As L(X) ST(X),  there exists v   X such that  

   z = Lz = STv.     

 Putting x = x2n    and  y = v  in (3.1.5),  we get 

 (FLx2n, Mv(kt), FABx2n, STv(t), FLx2n, ABx2n
(t), FMv, STv(kt))  0. 

Letting n , we get 

 (Fz, Mv(kt), Fz, STv(t), Fz, z(t), FMv, z(kt))  0 

 (Fz, Mv(kt), 1, 1, Fz, Mv(kt))  0 

Using (a), we have  

 Fz, Mv(kt)  1, for all t > 0. 

Hence,   Fz, Mv(t) =1.  

Thus, z = Mv.   

Therefore,  z = Mv = STv.   

As (M, ST) is weakly compatible, we have 

  STMv = MSTv.        Thus,  STz = Mz. 

Step 6.    Putting x = x2n and y = z  in (3.1.5),  we get 

 (FLx2n, Mz(kt), FABx2n, STz(t), FLx2n, ABx2n
(t), FMz, STz(kt))  0 

Letting n ,  we get 

 (Fz, Mz(kt), Fz, Mz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Mz(t), Fz, Mz(t), 1, 1)  0. 

Using (b), we have 

 Fz, Mz(t) 1, for all t > 0. 

Thus,   Fz, Mz(t) = 1,  we have  

 z = Mz = STz. 

Step 7.    Putting x = x2n   and  y = Tz  in (3.1.5) and using Step 5,  we get 

 (FLx2n, MTz(kt), FABx2n, STTz(t), FLx2n, ABx2n
(t), FMTz, STTz(kt))  0. 

Letting n , we get 

 (FLz, Tz(kt), Fz, Tz(t), Fz, z(t), FTz, Tz(kt))  0 

 (Fz, Tz(kt), Fz, Tz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Tz(t), Fz, Tz(t), 1, 1)  0. 

Using (b), we have 
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 Fz, Tz(t)  1, for all t > 0. 

Thus,  Fz, Tz(t) = 1, we have 

 z = Tz. 

Since Tz = STz, we also have  z = Sz . 

Hence    

  Az = Bz = Lz = Mz = Tz  = Sz  = z. 

 Hence, the six self maps have a common fixed point in this case.  

Case II. When L is continuous. 

 As L is continuous, L2x2n   Lz    and    L(AB)x2n   Lz. 

 As (L, AB) is compatible map of type (), so    

  LLx2n  (AB) (AB)x2n  and LABx2n ABz 

 By uniqueness of limit in Menger space, we have  

  Lz = ABz. 

Step 8.   Putting x = z and y = x2n+1  in (3.1.5),  we get 

 (FLz, Mx2n+1
(kt), FABz, STx2n+1

(t), FLz, ABz(t), FMx2n+1, STx2n+1
(kt))  0. 

Letting n ,  we get 

 (FLz, z(kt), FLz, z(t), FLz, Lz(t), Fz, z(kt))  0 

 (FLz, z(kt), FLz, z(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (FLz, z(t), FLz, z(t), 1, 1)  0. 

Using (b), we have 

 Fz, Lz(t)  1, for all t > 0. 

Thus, Fz, Lz(t) =1 

 z = Lz. 

Therefore,  

 z = Lz = ABz. 

Step 9.  Putting x = Bz and y = x2n+1  in (3.1.5),  we get 

 (FLBz, Mx2n+1
(kt), FABBz, STx2n+1

(t), FLBz, ABBz(t), FMx2n+1, STx2n+1
(kt))  0. 

Letting n ,  we get 

 (FBz, z(kt), FBz, z(t), FBz, Bz(t), Fz, z(kt))  0 

 (FBz, z(kt), FBz, z(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (FBz, z(t), FBz, z(t), 1, 1)  0. 

Using (b), we have 

 FBz, z(t)  1, for all t > 0. 

Thus, FBz, z(t) =1 
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 z = Bz. 

Since z  = ABz, we also have  z = Az. 

Therefore,  z = Az = Bz = Lz. 

Step 10.   As L(X) ST(X),  there exists v   X such that  

   z = Lz = STv.     

 Putting x = x2n    and  y = v  in (3.1.5),  we get 

 (FLx2n, Mv(kt), FABx2n, STv(t), FLx2n, ABx2n
(t), FMv, STv(kt))  0. 

Letting n , we get 

 (Fz, Mv(kt), Fz, STv(t), Fz, z(t), FMv, z(kt))  0 

 (Fz, Mv(kt), 1, 1, Fz, Mv(kt))  0 

Using (a), we have  

 Fz, Mv(kt)  1, for all t > 0. 

Hence,   Fz, Mv(t) =1.  

Thus, z = Mv.   

Therefore,  z = Mv = STv.   

As (M, ST) is weakly compatible, we have 

  STMv = MSTv.         

Thus,  STz = Mz. 

Step 11.    Putting x = x2n and y = z  in (3.1.5),  we get 

 (FLx2n, Mz(kt), FABx2n, STz(t), FLx2n, ABx2n
(t), FMz, STz(kt))  0 

Letting n ,  we get 

 (Fz, Mz(kt), Fz, Mz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Mz(t), Fz, Mz(t), 1, 1)  0. 

Using (b), we have 

 Fz, Mz(t)  1, for all t > 0. 

Thus,   Fz, Mz(t) = 1,  we have  

 z = Mz = STz. 

Step 12. Putting x = x2n   and  y = Tz  in (3.1.5) and using Step 5,  we get 

 (FLx2n, MTz(kt), FABx2n, STTz(t), FLx2n, ABx2n
(t), FMTz, STTz(kt))  0. 

Letting n , we get 

 (FLz, Tz(kt), Fz, Tz(t), Fz, z(t), FTz, Tz(kt))  0 

 (Fz, Tz(kt), Fz, Tz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Tz(kt), Fz, Tz(t), 1, 1)  0. 

Using (b), we have 
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 Fz, Tz(t)  1, for all t > 0. 

Thus,  Fz, Tz(t) = 1, we have 

 z = Tz. 

Since Tz = STz, we also have  z = Sz . 

Hence   Az = Bz = Lz = Mz = Tz  = Sz  = z. 

Hence, the six self maps have a common fixed point in this case also. 

Uniqueness.  Let w be another common fixed point  of A, B, L, M, S and T;  then   

w = Aw =  Bw = Lw = Mw = Sw = Tw. 

 Putting x = z   and    y = w   in   (3.1.5), we get 

 (FLz, Mw(kt), FABz, STw(t), FLz, ABz(t), FMw, STw(kt))  0 

 (Fz, w(kt), Fz, w(t), Fz, z(t), Fw, w(kt))  0 

 (Fz, w(kt), Fz, w(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, w(t), Fz, w(t), 1, 1)  0. 

Using (b), we have 

 Fz, w(t)  1, for all t > 0. 

Thus,  Fz, w(t) = 1,  

i.e.,  z = w. 

 Therefore, z is a unique common fixed point of A, B, L, M, S & T. 

 This completes the proof. 

Remark 3.1. The above theorem is a generalization of the result of Pant et. al. [9] in the sense that the condition 

of semi-compatibility has been replaced by compatibility of type (). 
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