SOME RESULTS ON WEAK CO-MULTIPLICATION MODULES

Arvind Kumar Sinha

Department of Mathematics, National Institute of Technology, Raipur, Chhattisgarh, (India)

ABSTRACT

Let R be a commutative ring with identity and all modules to be treated as unitary modules. In this paper we obtain some results on weak co-multiplication modules.

Mathematical Subject Classification: 13C05, 13C13, 13A15, 13C99, 13E05, 16D70

Key words: Multiplication Module, Co-multiplication Module, Weak Multiplication Module, Weak Co-multiplication Module, Pure Module, Co-pure Module.

I. INTRODUCTION

Multiplication module was introduced by Barnard [8] in 1981. The dual notion of multiplication module as co-multiplication module was introduced by Ansari- Toroghy and Farshadifar [6] in 2007. Using the concept prime sub-module of module, the concept of weak multiplication module was developed and many more results have been given by Azizi Shiraz [4]. In the year 2009 the dual notion of weak multiplication module as weak co-multiplication module was introduced by Atani and Atani [5]. Some results on co-multiplication module were given by Saeed Rajaee [1]. This paper continues this line of research for weak co-multiplication modules.

Throughout this paper all rings will be commutative with non-zero identity and all modules will be unitary. If N and K are submodules of R-module M then the residual ideal N by K is defined as $N : R K = \{ r \in R : r K \subseteq N \}$. Let N be submodule of M and I be an ideal of R the residual submodule N by I is defined as $N : M I = \{ m \in M : mI \subseteq N \}$.

In the special case in which $N = 0$ the ideal $(0 : R K)$ is called annihilator of K and it is denoted by Ann$_R(K)$ also the submodule $(0 : M I)$ is called the annihilator of I in M and it is denoted by Ann$_M(I)$. A proper submodule N of an R-module M is said to be prime submodule of module M if $ra \in N$ for $r \in R$ and $a \in M$ then either $a \in N$ or $rM \subseteq N$[10] (also see examples in [11], [12].) The set of all prime submodules in an R-module M is denoted by Spec(M).

The aim of this paper is to investigate some results on weak co-multiplication modules.

II. PRELIMINARIES

In this section we give some basic definitions which will be helpful to understand the further results.

Definition 2.1 [8] An R-module M is said to be a multiplication module if for every submodule N of M, there exist an ideal I of R such that $N = I M$.
Definition 2.2 [6] An R-module M is said to be co-multiplication module if for every submodule N of M there exist an ideal I of R such that $N = (0 :_M I)$. It also follows that M is a co-multiplication module if and only if $N = (0 :_M \text{Ann}_R(N))$ for every submodule N of M.

Definition 2.3 [4] An R-module M is called weak multiplication module if M doesn’t have any prime submodule or every prime submodule N of M, we have $N = I : M$, where I is an ideal of R.

One can easily show that if an R-module M is a weak multiplication module then $N = (N :_R M)$ for every prime submodule N of M [9].

Definition 2.4 [5] Let R be a commutative ring. An R-module M is defined to be a weak co-multiplication module if $\text{Spec}(M) = \emptyset$ or for every prime submodule N of M, $N = (0 :_M I) = \text{Ann}_M(I)$ for some ideal I of R. Also M is a weak co-multiplication module if and only if $N = [0 :_M \text{Ann}_R(N)]$ for every prime submodule N of M. We denote this concept by $N \subseteq WC M$.

Definition 2.5[2] A submodule N of an R-module M is said to be pure submodule if $IN = N \cap IM$, for every ideal I of R.

Definition 2.6 [3] A submodule N of an R-module M is said to be co-pure submodule if $(N :_M I) = N + (0 :_M I)$, for every ideal I of R.

Definition 2.7[1] An R-module M is said to be fully pure (respectively fully co-pure) if every submodule of M is pure (respectively co-pure).

Definition 2.8 [7] If R is a ring and M is an R-module then M is said to be semisimple module if every submodule of M is a direct summand of M.

III. MAIN RESULTS

In this section we obtain some results on weak co-multiplication modules.

Proposition 3.1

Let M be an R-module and $N \subseteq L \subseteq M$ then L/N is a weak co-multiplication submodule of M/N if and only if there exists an ideal I of R such that

$L/N = [N :_M I] = \{ m + N \in M/N | (m + N) = \text{Im} + N \subseteq N \} = \{ m + N \in M/N | \text{Im} \subseteq N \} = \{ m + N \in M/N | m \in [N :_M I] \} = \text{Ann}_M(I) + N$.

Proof:

Since $IN \subseteq N$ for every ideal I of R, hence $N \subseteq L = [N :_M I]$. We consider M/N as an R-module. If L/N is a weak co-multiplication module then $\text{Spec}(M/N) = \emptyset$ or for every prime submodule $L/N \subseteq WC M/N$ then there exists an ideal I of R such that

$L/N = [N :_M I] = \{ m + N \in M/N | (m + N) = \text{Im} + N \subseteq N \} = \{ m + N \in M/N | \text{Im} \subseteq N \} = \{ m + N \in M/N | m \in [N :_M I] \} = [N :_M I] / N$. Therefore $L = [N :_M I]$. The converse is clearly true.

Further let N be co-pure then $[N :_M I] = N + [0 :_M I]$. So

$L/N = N + [0 :_M I] / N \cong [0 :_M I] / N \cap [0 :_M I] = [0 :_M I] / [0 :_N I] = \text{Ann}_M(I) / \text{Ann}_N(I)$.

In particular let M be a semisimple R-module then there exists $K \subseteq M$ such that $M = N \oplus K$. Therefore $[N :_M I] = [K :_R I] + [N :_N I] = [0 :_K I] + N \subseteq [0 :_M I] + N$. Conversely it is clear that $[0 :_M I] + N \subseteq [N :_M I]$. Therefore $[N :_M I] = [0 :_M I] + N$ and hence N is co-pure.
Corollary 3.2
Let \(M \) be an \(R \)-module and \(N \subseteq L \subseteq M \). If \(N \subseteq_{WC} M \) and \(M/N \) be weak co-multiplication \(R \)-module then \(L \subseteq_{WC} M \).

Proof:
We suppose that \(N = \{ 0 :_M J \} \) for some ideal \(J \) of \(R \). Since \(L/N \subseteq_{WC} M/N \) (by above Proposition 3.1), we have \(L = \{ N :_M I \} \) for some ideal \(I \) of \(R \). Therefore \(L = \{ 0 :_M IJ \} \) and hence \(L \subseteq_{WC} M \). This completes the proof.

IV. ACKNOWLEDGEMENTS

The author would like to thank to CCOST Raipur INDIA (Chhattisgarh Council of Science and Technology Raipur) for the financial support.

REFERENCES