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ABSTRACT 

This paper concentrates on residuals analysis to check the assumptions for a multiple linear regression model 

by using graphical method. Specifically, we plot the residuals and standardized residuals given by model 

against predicted values of the dependent variables, normal probability plot, histogram of residuals and 

Quantile plot of residuals. However, we introduced the concept of multicollinearity to check whether one of the 

assumptions of the linear regression model thatthere is no multicollinearity among the explanatory variables is 

satisfied. We also gave an example that indicated the presence of multicollinearity in the regression model using 

eview (statistical software).  

 

I. INTRODUCTION 

 

The main aim of regression modelling and analysis is to develop a good predictive relationship between the 

dependent (response) and independent (predictor) variables. Multicollinearity analysis plays a vital role in 

finding and validating such a relationship. In this study, we discuss issues that arise in the development of a 

multiple linear regression model. Consider the following standard multiple linear regression model: 

0 1 1 2 2 ... p pY X X X           

whereY  is a response variable and 
'X s  are predictor variables, 

's  are the (regression) parameters to be 

estimated from data, and  is the error or residual.  

The validity of the inference methods depends on the error term , satisfying these assumptions; 

 Independence: Observations (and hence residuals) are statistically independently distributed. 

 Normality: The residuals are normally distributed with zero mean. 

 Homoscedastiticity: All the observations (and hence residuals) have the same variance. 

 Multicollinearity: No linear correlation between independent variables 

 

II. METHOD METHODOLOGY 

 

In statistics, multicollinearity (also collinearity) is a phenomenon in which two or more predictor variables in a 

multiple regression model are highly correlated, meaning that one can be linearly predicted from the others with 

a substantial degree of accuracy. In this situation the coefficient estimates of the multiple regressions may 

change erratically in response to small changes in the model or the data. Multicollinearity does not reduce the 

predictive power or reliability of the model as a whole, at least within the sample data set; it only affects 

calculations regarding individual predictors. 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Multiple_regression
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Regression_coefficient
https://en.wikipedia.org/wiki/Dependent_and_independent_variables#Use_in_statistics
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Collinearity is a linear association between twoexplanatory variables. Two variables are perfectly collinear if 

there is an exact linear relationship between them. For example, 1X and 2X are perfectly collinear if there exist 

parameters 0 and 1 such that, for all observations i , we have 

2 0 1 1 .i iX X    

 

2.1 Sources of Multicollinearity 

There are several sources of multicollinearity. As Montgomery and Peck note, multicollinearity may be due to 

the following factors: 

1. The Data collection method employed, for example, sampling over a limited     range of the values taken by 

the regressors in the population. 

2. Constraints on the model or in the population being sampled. For example, in the regression of electricity 

consumption on income (X2) and house size (X3) there is a physical constraint in the population in that families 

with higher incomes generally have larger homes than families with lower incomes. 

3. Model specification, for example, adding polynomial terms to a regression model, especially when the range 

of the X variable is small. 

1. What is the nature of multicollinearity? 

2. Is multicollinearity really a problem? 

3. What are its practical consequences? 

4. How does one detect it? 

5. What remedial measures can be taken to alleviate the problem of multicollinearity? 

 

2.2 The Nature of Multicollinearity 

The term multicollinearityis due to Ragnar Frisch. Originally it meant the existence of a “perfect,” or exact, 

linear relationship among some or all explanatory variables of a regression model. For the k -variable regression 

involving explanatory variable 1 2, ,..., kX X X (where 1 1X   for all observations to allow for the intercept 

term), an exact linear relationship is said to exist if the following condition is satisfied: 

1 1 1 1 ... 0k kX X X          ……….…………..……………….………………………. (3.1)  

where 1 2, ,..., k   are constants such that not all of them are zero simultaneously. 

Today, however, the term multicollinearity is used in a broader sense to include the case of perfect 

multicollinearity, as shown by (3.1) , as well as the case where the X variables are intercorrelated but not 

perfectly so, as follows: 

1 1 2 2 ... k k iX X X v      ………………………………….…………………………………………………. (3.2)  

where iv is a stochastic error term. 

Consequences of multicollinearity: One consequence of a high degree of multicollinearity is that, even if the 

matrix 
TX X  is invertible, a computer algorithm may be unsuccessful in obtaining an approximate inverse, and 

if it does obtain one it may be numerically inaccurate. But even in the presence of an accurate 
TX X  matrix, 

the following consequences arise. 

https://en.wikipedia.org/wiki/Explanatory_variable
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A principal danger of such data redundancy is that of over fitting in regression analysis models. The best 

regression models are those in which the predictor variables each correlate highly with the dependent (outcome) 

variable but correlate at most only minimally with each other. Such a model is often called "low noise" and will 

be statistically robust (that is, it will predict reliably across numerous samples of variable sets drawn from the 

same statistical population). 

Indicators that multicollinearity may be present in a model: 

1. Large changes in the estimated regression coefficients when a predictor variable is added or deleted 

2. Insignificant regression coefficients for the affected variables in the multiple regression, but a rejection of 

the joint hypothesis that those coefficients are all zero (using an F -test) 

3. If a multivariable regression finds an insignificant coefficient of a particular explanator, yet a simple linear 

regression of the explained variable on this explanatory variable shows its coefficient to be significantly 

different from zero, this situation indicates multicollinearity in the multivariable regression. 

4. Some authors have suggested a formal detection-tolerance or the variance inflation factor (VIF) for 

multicollinearity: 

21 ,jtolerance R 
1

VIF
tolerance

  

5. where
2

jR is the coefficient of determination of a regression of explanatorj on all the other explanators. A 

tolerance of less than 0.20 or 0.10 and/or a VIF of 5 or 10 and above indicates a multicollinearity problem. 

6. Condition Number is computed by finding the square root of (the maximum eigenvalue divided by the 

minimum eigenvalue). If the Condition Number is above 30, the regression may have significant 

multicollinearity; multicollinearity exists if, in addition, two or more of the variables related to the high 

condition number have high proportions of variance explained. One advantage of this method is that it also 

shows which variables are causing the problem.  

We can derive what is known as the condition number k defined as 

Minimum eigenv

 

alue

Maximum eigenvalue
k   

and the condition index (CI) defined as 

Minimum eigenval

 

ue

Maximum eigenvalue
Cl k   

Then we have the following rule: if k is between 100 and 1000 there is moderate to strong multicollinearity 

and if it exceeds 1000 there is severe multicollinearity. Alternatively, if the ( )Cl k is between 10 and 30, 

there is moderate to strong multicollinearity and if it exceeds 30 there is severe multicollinearity. 

 

2.3 Remedies for Multicollinearity 

1. Make sure you have not fallen into the dummy variable trap; including a dummy variable for every 

category (e.g., summer, autumn, winter, and spring) and including a constant term in the regression together 

guarantee perfect multicollinearity. 

2. Try seeing what happens if you use independent subsets of your data for estimation and apply those 

estimates to the whole data set. Theoretically you should obtain somewhat higher variance from the smaller 

https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/F-test
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Dummy_variable_(statistics)
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datasets used for estimation, but the expectation of the coefficient values should be the same. Naturally, the 

observed coefficient values will vary, but look at how much they vary. 

3. Leave the model as is, despite multicollinearity. Drop one of the variables 

4. Obtain more data, if possible.  

5. Polynomial terms (i.e., for 
2 3

1 1 1, ,x x x  , etc.) can cause some multicollinearity if the variable in question has 

a limited range (e.g., [2,4]). 

6. Ridge regression or principal component regression or partial least squares regression can be used. 

 

III. ANALYSIS OF RESULT 

 

We use a Longley data having six independent variables X1,…,X6 and one dependent variable Y. 

 X1 X2 X3 X4 X5 X6 Y 

1 0.94 0.8 2200 540 4000 140 17721 

2 0.75 1.03 2300.06 790 9800 85 17768 

3 0.6 0.95 1920 580 12343 56 17823 

4 1 0.91 890 338 8070 41.8 15163 

5 0.5 0.95 7343.3 3100 13290 250 17480 

6 0.834 0.88 850.23 402 5110 78.1 15329 

7 1 0.89 1678 590 7456 87 16141 

8 0.75 0.89 739.1 560 3234 180.9 15326 

9 1.5 0.93 1100 1200 3500 400 17115 

10 1.5 0.89 274.6 500 1900 240.2 17117 

11 0.71 0.86 360 201 4200 49 16127 

12 1 0.94 1879.1 569 4975 115.78 17242 

13 0.6 0.84 1965 1287 9000 189 17340 

14 1.5 0.87 2300 1630 3000 560.5 15108 

15 1.05 0.98 450.34 750 2134 370 16098 

16 0.6 0.67 587 502 1501 376 15000 

17 0.6 0.93 7598 3478.9 7564 460.01 18027 

18 0.45 0.85 530 480 8700 65 17894 

19 0.6 0.93 650 300 4997 60 12349 

20 1 1.03 1550 380 11100 41.87 17011 

21 0.45 0.76 1618.3 600 6501 96.78 16537 

22 1.15 0.96 2009.8 280 6802 55.1 14123 

23 1.15 0.87 1567 270 5234 54.34 13019 

24 0.6 0.76 1298 520 2910 200.12 12980 

25 1 1 14000 7323.3 25674 180.98 20513 

26 1.35 0.87 3780 1801 13210 136 16089 

27 0.75 0.91 545 980 3059 345 15944 

28 1 0.79 2385.8 400 8312 55.4 14980 

https://en.wikipedia.org/wiki/Ridge_regression
https://en.wikipedia.org/wiki/Principal_component_regression
https://en.wikipedia.org/wiki/Partial_least_squares_regression
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How multicollinearity affects any estimated regression model? 

Here is our model: 

1 2 3 4 5 6Y C X X X X X X        .................................................................. (1.1)  

Here Y  is the dependent variable and the rest are independent variables. After estimating Model (1.1) , we saw 

that only 
5X  is significant while others are not. We suspect that, there is a problem of multicollinearioty in 

Model (1.1)  that is why most of the variables have become insignificant. 

What is Multicollinearity? 

If there is exits a high correlation between any two independent variables, problem of multicollinearity arises. A 

multicollinearity problem makes significant variables insignificant by increasing its standard error. And if the 

standard error goes up, t -value goes down and hence comes up with high p -value. So, that particular variable 

becomes insignificant but in reality it is not. In particular, 

t -statistic
 

 

estimated coefficient

standard error
 

hence absolute t -statistic and p -value has always opposite relationship. Normally, if the p -value is more 

than 5%  (0.05), then variable is insignificant. 

How to Detect Multicollinearity? 

We run correlation analysis using all our independent variables only given in Model (1.1)  and find there exits 

high correlation between 3X  and 4X . As a result, problem of multicollinearity arises, so we have to drop one 

variable from the model, either 3X  or 4X  to solve the problem of multicollinearity. 

How to Solve the Problem of Multicollinearity 

The guideline is that, we shall drop that variable  which has higher p -value out of 3X and 4X .  Higher the p

-value, lower the level of significance.  

What is Multicollinearity? 

If there is exits a high correlation between any two independent variables, problem of multicollinearity arises. A 

multicollinearity problem makes significant variables insignificant by increasing its standard error. And if the 

standard error goes up, t -value goes down and hence comes up with high p -value. So, that particular variable 

becomes insignificant but in reality it is not. In particular, 

t -statistic
 

 

estimated coefficient

standard error
 

29 1.15 0.98 1700 350 3898 110.45 14980 

30 1 0.87 550.98 200 8309 20.2 17743 

31 0.85 0.71 1769.1 460 9000 52.099 16890 

32 0.5 0.79 1100 654 2510 262.7 14980 

33 1.3 0.98 845 1010 3208 310.09 18014 

34 0.75 0.85 1678.67 734 16340 47.09 22000 

35 0.71 0.85 167.67 350 6988 56.67 20744 
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hence absolute t -statistic and p -value has always opposite relationship. Normally, if the p -value is more 

than 5%  (0.05), then variable is insignificant. 

How to Detect Multicollinearity? 

We run correlation analysis using all our independent variables only given in Model (1.1)  and find there exits 

high correlation between 
3X  and 

4X . As a result, problem of multicollinearity arises, so we have to drop one 

variable from the model, either 
3X  or 

4X  to solve the problem of multicollinearity. 

How to Solve the Problem of Multicollinearity 

The guideline is that, we shall drop that variable  which has higher p -value out of 
3X and

4X .  Higher the 

p -value, lower the level of significance.  

After estimating Model (1.1) , and after removing
4X , we saw that more variables have become significant 

such as
3X , 

5X  and
6X . Consequently, problem of multicollinearity have been removed. Normally in a good 

regression model most of the independent variables should be significant. Therefore, since out of five variables, 

three are significant so we are happy about the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correlation Analysis                                                                    

X1 1.000000 0.314350 -0.034371 0.018090 -0.121271 0.220694 

X2 0.314350 1.000000 0.282192 0.292033 0.272359 0.005813 

X3 -0.034371 0.282192 1.000000 0.953609 0.728938 0.170192 

X4 0.018090 0.292033 0.953609 1.000000 0.658299 0.342713 

X5 -0.121271 0.272359 0.728938 0.658299 1.000000 -0.343221 

X6 0.220694 0.005813 0.170192 0.342713 -0.343221 1.000000 

Dependent Variable: Y   

Method:  

Least Squares   

Date: 08/21/15   Time: 05:35  

Sample: 1 35    

Included observations: 35   

     
     
Variable Coefficient Std. Error t-Statistic Prob.   

     
     
C 12307.52 3154.222 3.901920 0.0005 

X1 -435.8796 1039.740 -0.419220 0.6781 

X2 1273.139 3784.611 0.336399 0.7390 

X3 -0.435085 0.211627 -2.055908 0.0489 

X5 0.467108 0.119651 3.903908 0.0005 

X6 6.477944 2.941538 2.202230 0.0358 

     
     
R-squared 0.436018 Mean dependent var 16534.71 

Adjusted R-squared 0.338779 S.D. dependent var 2062.459 
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IV. CONCLUSION 

 

1. We estimate the value of the regression residuals for each value of y : ˆ ˆy y    

which is     –      the observed value the predicted or expected value . 

2. We made sure the removal of multicollinearity by dropping the appropriate highly correlated independent 

variables before studying the residuals. 
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