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ABSTRACT 

In this paper, we consider the Vehical Routing Problem (VRP). Where VRP is modelled as a VRP-graph, in 

which each edge is treated as a parallel combination of oppositely directed edges. We model VRP-graph as a 

Petri Net-graph, where Petri Net- graph is an underlying graph of VRP-graph.  Then solve VRP by defining 

suitable binary operation on elements of columns in sign incidence matrix representation of Petri Net-graph. In 

Petri Net-graph, we find a set of places which is both Siphon and Trap with minimum sum of capacities, whose 

set of input transitions equals to the set of output transitions, and both of them are equal to the set of all 

transitions in Petri Net. Then edges in VRP-graph corresponding to these places in Petri Net-graph will form a 

shortest route for the seller to return the point of origin, after traversing all the cities exactly ones. For the 

solution of VRP, we describe a new algorithm, based on siphon-trap and bounded-ness property of the Petri 

Nets. 2000 Mathematics Subject Classification: 68R10, 90C35, 94C15. 

 

Keywords: Travelling Seller’s Problem, Weighted Directed Graph, Spanning Cycle, Petri Net, 
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I. INTRODUCTION 

 

The Vehical Routing Problem (VRP) is one of the most intensely studied problems in computational 

mathematics [5]. Mathematical problems related to the VRP were treated in the early nineteenth century by W.R 

Hamilton and British mathematician T. P. Kirkman. Although there are many algorithms given for the solution 

of VRP [6, 7, 8, 13, 14], yet no effective solution is known for the general case for the VRP. In this paper, we 

address the same problem with a different approach, using Petri Net model. Here we present a new algorithm to 

solving a VRP using the siphon-trap and bounded-ness property of the places in the One-one Petri Net model of 

given VRP-graph. For the VRP we find a set of places in Petri Net, which is both Siphon and Trap [1, 3], with 

minimum sum of capacities, having the property that set of input transitions equals to the set of output 

transitions, and both of them are equal to the set of all transitions given in the Net. Then edges in VRP-graph 

corresponding to these places form a shortest route for the seller.  

 In Petri Net theory, Petri Net is a formal tool which is particularly well suited for discrete event systems. Its 

application has emerged from the initial seminal PhD thesis of C. A. Petri, so C.A. Petri is considered as the 

originator of Petri Net applications [10, 11]. The computational algorithmic aspects of graph theory are 
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emphasized in the study of the Petri Nets. The most interesting connections between graph theory and Petri Nets 

have been brought out by T.Murata [9].   

This paper is organized as follows: Section 2 provides the necessary preliminaries, Section 3 formulates the 

problem, Section 4 describes the algorithm for VRP with illustrative example and Section 5 briefly concludes 

this paper. 

 

II. AN OVERVIEW OF PETRI NET APPROACH 

 

This section of the paper provides the necessary preliminaries for the readers who are not familiar with Petri 

nets. 

As Petri Nets are also called place-transition net (PT-Net), it is a particular kind of directed graphs together with 

an initial state called the initial marking.  In general a Petri Net is an underlying graph of any directed graph, 

which is in essence a directed bipartite graph with two types of nodes called places and transitions. The arcs are 

either from places to transitions (output of places) or from transitions to places (input of places). In the Petri Net 

graph a place is denoted by a circle, a transition by a box or a bar and an arc by a directed line. A Petri Net is a 

PT-Net with tokens assigned to its places denoted by black dots, and the token distribution over its places is 

done initially by a marking function denoted by M0.  A token is interpreted as a command given to a condition 

(place) for the firing of an event (transition). An event can happen, when its all input conditions are fulfilled, 

See Fig.1. 

 

Fig.1 

There are many subclasses of Petri Nets such as One-one Petri Nets, free choice Petri Nets, colored and 

stochastic Petri Nets etc. Here we introduce only One-one Petri Net, as it is an ordinary Petri Net such that each 

place P has exactly one input transition and one output transition having weight one on each edge, but we ignore 

these weights generally in the model representation of the Net PN. One-one Petri Net is also called as Marked 

Graph [4]. In our paper standard notation PN is treated as One-one Petri Net. More detailed and formal 

description of Petri Nets is given in [2, 9, 10, 15]. We include here some basic definitions, which are relevant to 

this paper.  

Definition 2.1: A place-transition net (PT-Net) is a quadruplet PN = P, T, F, W, where P is the set of places, T 

is the set of transitions, such that P  T and P  T=, F  (P x T)  (T x P) is the set of arcs and W: F 

{1, 2 ...} is the weight function. PN is said to be an ordinary PT-Net if and only if W: F {1}.   

A marking is a function  M0: P {0, 1, 2, ...},which distributes the tokens to the places initially. Here M0 (p) is 

the number of tokens in the place p at initial marking M0, it is a non- negative integer less then or equal to the 

capacity of the place. Capacity of the place is defined as the capability of holding the maximum no. of tokens at 

any reachable marking M from M0. A marking M is said to reachable to M0 if there exist a firing sequence σ = 

{t1, t2,…, tn} such that M can be obtained from M0  as firing of transitions t1, t2,…, tn. A Petri Net structure PN = 
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P, T, F, W  without any specific initial marking is denoted by PN and Petri Net with the given initial marking 

is denoted by  PN, M0. *x and x* are the set of input transitions (or places) and the set of output transitions (or 

places) respectively, as x P (or T). Here | *x | and | x* | stands for number of the input transitions (or places) 

and the output transitions (or places) respectively. Thus a One-one Petri Net is an ordinary PT-Net such that  p 

 P: |*p|=|p*| =1, i.e., the number of the input transitions for p  P equals to the number of the output transitions 

and both of them are equal to one. 

For a PT-Net, a path is a sequence of nodes  =  x1, x2… xn   where (xi, xi+1) F for i = 1, 2… n-1.   is said to 

be elementary if and only if it does not contain the same node more than once and   

a cycle is a sequence of places  p1 , p2 , …pn   such that there exist t1, t2,…, tn   T :  p1, t1, p2, t2,…., pn , tn  

forms an elementary path and (tn, p1) F. 

Definition 2.2: For a PT-Net PN, M0, a place p is said to be k-bounded (or bounded by k) where k R
+
, if and 

only if M0 (p) < k., denotes the capacity of the place in the Net. (PN, M0 is said to be k-bounded if and only if 

every place is k-bounded.  

Definition 2.3: A non-empty subset of places S is called a Siphon if *p p*  pS denoted also *S S*; i.e., 

every transition having an output place in S has an input place in S. Likewise a non-empty subset of places Q is 

called a Trap if p* *p  pQ denoted also Q*  *Q; i.e., every transition having an input place in Q has an 

output place in Q. 

 

III. PROBLEM FORMULATION: VEHICAL ROUTING PROBLEM (VRP) 

 

For a given network of cities and the cost of travel between each pair of them, the Vehical Routing Problem or 

VRP for short, is to find the shortest route for the seller, visiting to all of the cities exactly ones and returning to 

the starting point. In the standard version of VRP, the travel costs or distances are symmetric in the sense that 

travelling from city X to city Y costs just as much as travelling from Y to X. Any round-trip tour that goes 

through every city exactly once is a feasible tour with a given cost, if it is smaller than the other minimum cost 

tour.  

 

3.1 Modelling VRP as a Graph (VRP-graph):  

A pair G = {V, E}, where V= {v1,v2,v3,…,vn} is the set of vertices and E = {e1,e2,…,em} is the set of edges such 

that each edge ei having some weights wiW, where W:E R
+   

is the weight function and wi =w(ei) is the 

weight associated with edge ei  . Further when the edges vi vj and vj vi are considered different then G={V,E} is 

called a  weighted directed graph. In weighted directed graph, a directed cycle is a closed sequence of directed 

edges without repetition of vertices except terminals and it said to be Spanning if it contains all the vertices of 

the graph. If any edge from the sequence is deleted then cycle becomes open. Thus solving a VRP amounts to 

finding a minimum weight spanning cycle. 

As an illustration we consider a weighted graph on four vertices denoting the four cities A, B, C, D, where each 

city has a direct link with the other three. The numbers (weights) associated with the edges denotes the physical 

distance between the cities, See Fig. 2. We construct a directed weighted graph (VRP-graph) of the same graph 

in Fig. 3.  
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Distance between two cities in Fig.3 can be represented in terms of adjacency matrix as depicted below: 

 

3.2 Modelling VRP-graph by Petri Nets:  

A Petri Net PN is modelled from VRP-graph given in Fig. 3 as follows:  edges es are transformed into places ps 

and vertices vk are transformed into transitions tk so that the place ps has an input from a transition ti, and an 

output to a transition tj, if es is an directed edge vi vj in graph, then weights (distance between two cities) of es’s 

are replaced by capacities ks of corresponding places ps and number of tokens for places ps‘s is the value of 

 sk .            

 Fig. 4 shows the One-one Petri Net model say PN, of the VRP-graph, having the set of transitions T= {t1 t2, t3, 

t4} and the set of places is P = {p1, p2,…,p12 } corresponding to the set of vertices{v1,v2,v3,v4}  and the set of edges 

{e1,e2,…,e12}  respectively in the given VRP-graph. For the sake of clarity, we observe that t1 is the input 

transitions for the places p2, p7, p10 and the output transition for the places p1, p8, and p9. Similarly p1 is the input 

place for the transition t1 and output place for the transition t4. Using this same procedure, we find a set of the 

places in Net which is both siphon and trap with minimum sum of capacities, whose set of the input transitions 

equals to the set of output transitions and both of them are equal to the set of all transitions in the Net PN. 

 V1 V2 V3 

 

V4 

V1 ----- 128 163 298 

V2 128 ----- 98 206 

V3 163 98 ----- 137 

V4 298 206 137 ----- 
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Fig.1 
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IV. DESCRIPTION OF ALGORITHM FOR TRAVELLING SELLER’S PROBLEM 

 As in above we model the VRP-graph as a Petri Net-graph. Now here we present an algorithm for solving the 

Travelling Seller’s Problem. For the description of the algorithm for VRP; we introduce some new notations as 

follows [16]:  

In a Petri Net PN with n-transitions and m-places, the sign incidence matrix I = [aij] is the  

n x m matrix, whose entries are defined as,              

                                      aij = +   if place j is an output place of transition i.  

                                     aij = -    if place j is an input place of transition i. 

                                     aij = ±    if place j is both input and output places of transition i  

                                        (i.e., transition i and place j form a self loop) 

                                      aij = 0     otherwise.  

As an illustration, the Sign incidence matrix I of PN is: 

 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 

t1 - + 0 0 0 0 + - - + 0 0 

t2 0 0 0 0 + - - + 0 0 + - 

t3 0 0 + - - + 0 0 + - 0 0 

t1 

t2 

t4 

t3 

p2  

p1  

p7  

p8  

p10  

p12  

p11  

p9  

p4  

p3  

p5  

p6  

Fig. 4 

PN = 
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t4 + - - + 0 0 0 0 0 0 - + 

Hare we introduce a commutative binary operation, denoted by  on the set U= (0, +, - ,).  

 defined as following:  

                         +  - =         ‘+’ entry is said to be neutralized by adding a ‘–‘entry to get a ‘±’ entry. 

                         a  a = a           aU 

                           a =             aU 

                         0   a = a             aU  

For the VRP, we choose a subset of k places X = {p1, p2…pk} in sign incidence matrix I of PN, which is both 

siphon and trap and also *X= X* = T, i.e., set of the input transitions of X is equals to the set of output 

transitions of X, and both of them equal to the set of all transition in T. This equality holds only if the addition 

under the operation , of the k column vectors say C1, C2, C3,…, Ck i.e., C1  C2 C3….. Ck contains only ± 

entries everywhere, where Cj , j = 1, 2... k, denotes the column vector corresponding to the place pj in I.  

Now let C1  C2 C3….. Ck will be a column vector denoted by γ = [γi]   where γi   denotes the  

i
 th

 element of the column vector γ, have as elements from set U. Then from the definition of I under the 

operation, we interprets about γi as. 

                      γi = 0    means no place in X is an input or output place of transition i. 

                      γi = -   means some place in X is an input place of transition i. 

                      γi = +   means some place in X is an output place of transition i. 

                      γi = ±   means some place in X is an input place as well as output place for transition i. 

From the above it can be seen that every transition having an output place in X has an input place in X only if   

γi  +, and likewise every transition having an input place in X has an output place in X only if γi -. So X is 

both siphon and trap if and only if γ has either 0 or ± entries. And if γ has only ± entries everywhere, then the 

places corresponding to columns C1, C2, C3,…, Ck in C1  C2 C3….. Ck forms a set of places, which is both 

siphon and trap, whose input transitions equals to the output transitions and both of them are equal to the set of 

all transitions T, with having some capacities. We select only those set of places X such that *X = X* = T, 

having minimum sum of capacities among all. Algorithm discussed below, gives us a siphon–trap set of places 

X with minimum sum of capacities, having the property *X = X* = T, whose corresponding edges in VRP-

graph will form a shortest route for the seller, we follow for this [16].  

ALGORITHM: 

Input   Sign incidence matrix I of order n x m. 

Step 1 Select Cj, the first column in the sign incidence matrix I having ‘+’ entry whose corresponding place and 

capacity is denoted as PLACEj and CAPACITYj 

                                                        Set recursion level r to 1  

Set Vjr = Cj 

Set PLACEjr = PLACEj;  

Set CAPACITYjr =CAPACITYj; 
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Set X =, W=, Sum =0 and 

K =. 

Step 2 If Vjr has a ‘±’ entry at the i
th

 row then PLACEjr is a self loop with transition i, Go to Step 5. 

Step 3 If Vjr has a ‘+’ entry in the k
th

 row find a column Cs which contains a ‘–‘entry at k
th

 row. 

(i) If no such column Cs exists then go to Step 5. 

(ii) If such Cs exists, add it to Vjr to obtain Vj(r+1) = Vjr  Cs, containing a ‘±’ entry at k
th

 row. Then                                                    

                                                      PLACEj(r+1) = PLACEjr  PLACEs  

                                                      CAPACITYj(r+1)   = CAPACITYjr    CAPACITYs 

(iii) Repeat this step for all neutralizing columns Cs. This gives a new set of Vj(r+1)’s, PLACEj(r+1)‘s and 

CAPACITYj(r+1)   

Step 4 Increase r by 1, Repeat Step 3 until there are no ‘+’entries in each Vjr = C1  C2 C3….. Cjr. 

Step 5 Any Vjr with all entries as ‘±’ represents both siphon and trap such that their input transitions equal to the 

output transitions and both of them equal to the set of all transitions T.  

                                 X = X   PLACEjr       

                                         K= K   CAPACITYjr 

                                      W=Sum + Sumw K, where Sumw K is the sum of the capacities in the set K  

                            Store it any other set and compare it to minimum weight set at each iteration   

Step 6   Delete Cj        

                                     j = j + 1 Go to Step 1. 

Output:   Set X has places both siphon and trap such that their input transitions equal to the output transitions 

and both of them equal to the set of all transitions T with minimum sum of capacities. Whose corresponding 

edges set in VRP-graph, forms a shortest route for the seller.  

As an illustration consider the graph in Fig 2.  

Step 1   Select first column having ‘+’ entry. Here is C1, then 
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row. The neutralizing columns are C4, C5 and C10.     
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;   PLACE
)5(

13  = {pl , p11, p7}; CAPACITY
)5(

13 = {137,298,163}  

              
)6(

13V  =
)3(

12V  C12 = 





























0

  



























0

0

=





























0

;   PLACE
)6(

13  = {pl, p11, p12}; CAPACITY
)6(

13 = {137,298,298} 

)1(

13V and
)6(

13V  has no ‘+’ entry , also all the entries are not ‘±’ only,  but those sets which  have all entries  ‘±’ or 

‘0’ are both siphon and trap ( as 
)1(

12V ,
)3(

13V and
)5(

13V ) 

)2(

13V has ‘+’ entry at 2
rd

 row. The neutralizing columns are C6, C7, and C12.  
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)1(

14V  =
)2(

13V  C6 = 































  



























0

0

=































;   PLACE
)1(

14  = {pl, p3, p5, p6}; CAPACITY
)1(

14 = {137,206,128,128}   

           
)2(

14V  =
)2(

13V  C7 = 































  



























0

0

=































;   PLACE
)2(

14  = {pl, p3, p5, p7}; CAPACITY
)2(

14 = {137,206,128,163} 

            
)3(

14V  =
)2(

13V  C12 = 































  



























0

0

=































;   PLACE
)3(

14  = {pl, p3, p5, p12}; CAPACITY
)3(

13 = {137,206,128,298} 

)4(

13V  has ‘+’ entry at 3
rd

 row. The neutralizing columns are C4, C5, and C10.   

           
)4(

14V  =
)4(

13V  C4 = 































  



























0

0

=































;   PLACE
)4(

14  = {pl, p6, p11, p4}; CAPACITY
)4(

14 = {137,298,128,206}    

          
)5(

14V  =
)4(

13V  C5 = 































  



























0

0

=































;   PLACE
)5(

14  = {pl, p6, p11, p5}; CAPACITY
)5(

14 = {137,298,128,128}     

        
)6(

14V  =
)4(

13V  C10 = 































  



























0

0 =































;   PLACE
)6(

14  = {pl, p6, p11, p10}; CAPACITY
)6(

14 = {137, 298, 128, 98}   

)1(

14V ,
)3(

14V ,
)4(

14V  and 
)5(

14V  has no  + entry. 
)2(

14V ,
)6(

14V  have all the entries as ‘±’,  Hence PLACE
)2(

14 and 

PLACE
)6(

14   form both siphon and trap whose input transitions equal to the output transitions and both of equal 

to the set of all transitions. 

Step 5 the subsets of places, which are both siphon and trap, whose input transitions equal the output transitions 

and both of them equal to the set of  all transitions are{pl, p3, p5, p7}and  {pl,, p6, p11, p10}with capacities sum 634 

and 661 as choosing column first C1.  

Step 6 now delete C1 from sign incidence matrix, choose next column and repeat all the steps again in similar 

way, we get another different sets of places {p2, p4, p6, p8},{p2, p9, p5, p12}, {p3, p8, p10, p12} and{p4, p11, p7, p9} as 

choosing columns C2 , C3 and C4 respectively having sum of the capacities 634, 661, 765 and 765. The set of 

places which have minimum sum of capacities 634 is either {pl, p3, p5, p7} or {p2, p4, p6, p8}. The edges set {el, e3, 

e5, e7} or {e2, e4, e6, e8} are corresponding to places set {pl, p3, p5, p7} and {p2, p4, p6, p8} respectively, will form a 
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shortest spanning cycle in underlying graph of Petri Net-graph, which give an optimal route for the seller in 

VRP-graph.  

 The finding of this can be applied to a company’s logistic problem of delivering petrol to different petrol sub-

stations. This delivery system is formulated as the Petri Net model, which involves finding an optimal route for 

visiting stations and returning to point of origin, where the inter-station distance is symmetric and known. As a 

standard problem, we defined it simply as the time spent or distance traveled by seller visiting n cities (or nodes) 

cyclically, where vehicle visits each station just once and returns the starting station. This real world application 

is a deceptive simple combinatorial problem and our approach is to develop solutions of such type of 

distribution problems, based on concept of the Petri nets.  

 

V. CONCLUSION 

 

In this paper, while solving the travelling seller problem, we have exploited the potentials of siphons and traps. 

Our analysis is based on the notion of sign incidence matrix; this helps us to relate Petri Net theory to graph 

theory. The complexity of the VRP is part of a deep question in mathematics, as VRP is a NP- complete 

problem. Here we have developed an algorithm using Petri net model, which can be executed by computer for 

any finite number of nodes.   
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