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ABSTRACT
The object of this paper is to establish a unique common fixed point theorem for six self

mappings using the concept of occasionally weak-compatibility in Menger space which is an
alternate result of Pant et. al. [8].

Keywords and Phrases.  Menger space, Common fixed points, Compatible maps, and
Occasionally Weak compatibility.

AMS Subject Classification (2000). Primary 47H10, Secondary 54H25.

I. INTRODUCTION

There have been a number of generalizations of metric space. One such generalization is Menger space initiated
by Menger [6]. It is a probabilistic generalization in which we assign to any two points x and y, a distribution
function F,,. Schweizer and Sklar [9] studied this concept and gave some fundamental results on this space.
Sehgal and Bharucha-Reid [10] obtained a generalization of Banach Contraction Principle on a complete
Menger space which is a milestone in developing fixed-point theory in Menger space.

Recently, Jungck and Rhoades [5] termed a pair of self maps to be coincidentally commuting or equivalently
weakly compatible if they commute at their coincidence points. Sessa [11] initiated the tradition of improving
commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces.
Jungck [4] soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger
space has been introduced by Mishra [7]. The concept of weak compatible mappings is most general among all
the commutativity concepts in this field as every pair of R-weakly commuting maps is compatible and each pair
of compatible maps is weak-compatible but the reverse is not true always.

The intent of this paper is to generalize the result of Pant et. al. [8]. So, our generalization in this paper is two
fold as

(1 Relaxed continuity of maps completely

(i) Weakened the concept of semi-compatibility by a more general concept of occasionally weak

compatible.
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I1. PRELIMINARIES

Definition 2.1.[7] A mapping F: R — RT is called a distribution if it is non-decreasing left continuous with
inf{F{t)|teR}=0 and sup{F()|te R}=1.

We shall denote by L the set of all distribution functions while H will always denote the specific distribution

function defined by

0, t<0
H(t) = .
1, t>0

Definition 2.2. [7] A mapping t :[0, 1] x [0, 1] — [0, 1] is called a t-norm if it satisfies the following

conditions :

(t-1) t(a, 1) = a, t(0,0)=0;

(t-2) t(a, b) = t(b, a) ;

(t-3) t(c,d) > t(a,b); forc>a,d>b,

(t-4) t(t(a, b), ¢) = t(a, t(b, ¢)) foralla, b,c,d e [0, 1].

Definition 2.3. [7] A probabilistic metric space (PM-space) is an ordered pair (X, #) consisting of a non empty
set X and a function #: X x X — L, where L is the collection of all distribution functions and the value of Fat

(u,v) e X x Xis represented by F, . The function F, |, assumed to satisfy the following conditions:

(PM-1) F, () =1, forall x>0, ifand only if u=v;

(PM-2) Fuv 0)=0;
(PM-3) Fu,v = Fv,u;
(PM-4) If Fu,v (x)=1and Fv,w (y) = 1 then Fu,w (x+y)=1,

forallu,v,w e Xandx, y>0.

Definition 2.4. [7] A Menger space is a triplet (X, &, t) where (X, ¥ is a PM-space and t is a t-norm such that
the inequality
(PM-5) Fu,w x+y)>t {Fu, v %), Fv, w) } forallu, v,w e X, x,y>0.
Definition 2.5. [9] A sequence {x,} in a Menger space (X, &, 1) is said to be convergent and converges to a
point x in X if and only if for each € >0 and A > 0, there is an integer M(g, A) such that

Fxn, x (€)>1 -2 foralln>M(g, 2).
Further the sequence {x,,} is said to be Cauchy sequence if for ¢ >0and A >0, there is an integer M(g, 1) such
that

Fxn, Xm(a) >1-A for all m, n > M(g, A).
A Menger PM-space (X, &, t) is said to be complete if every Cauchy sequence in X converges to a point in X.
A complete metric space can be treated as a complete Menger space in the following way :
Proposition 2.1. [7] If (X, d) is a metric space then the metric d induces mappings

F: X x X —> L, defined by Fp q(x) =H(x-d(p, q)), p, g € X, where
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H(k) =0, fork<0 and H(k)=1, fork>0.

Further if, t:[0,1] x [0,1] — [0,1] is defined by t(a,b) = min {a, b}. Then (X, &, t) is a Menger space. It is
complete if (X, d) is complete.
The space (X, &, t) so obtained is called the induced Menger space.
Definition 2.6. [2] Self mappings A and S of a Menger space (X, , t) are said to be weak compatible if they
commute at their coincidence points i.e. Ax = Sx for x € X implies ASx = SAX.
Definition 2.7. Two self mappings f and g of a Menger space (X,  t) are said to be occasionally weak
compatible if there is a point x € X which is coincidence point of f and g at which f and g commute.
Definition 2.8. [3] Self mappings A and S of a Menger space (X, & t) are said to be compatible if

FAan, SAxn(X) — 1 for all x > 0, whenever {x,} is a sequence in X such that Ax,, Sx,, — u for some u in X,

as N— oo.

Definition 2.8. [8] Self maps S and T of a Menger space (X, &, t) are said to be semi-compatible if FSTxn Tu
(x) »> 1 forall x >0, whenever {x,} is a sequence in X such that Sx,,, Tx, — u for some uin X, as n — oo.

It follows that if (S, T) is semi compatible and Sx = Tx then STx = TSx. Thus if the pair (S, T) is semi-
compatible then it is occasionally weakly compatible. The converse is not true.

Remark 2.1. Every semi-compatible pair of self-maps is occasionally weak compatible but the reverse is not
true always.

Lemma 2.1. [13] Let {x,} be a sequence in a Menger space (X, F, t) with continuous t norms t and t(a, a) > a.
If there exists a constant k e (0, 1) such that Fxn,xn+1(kt) > FXH, Xn(t) forallt> Oandn=1,2,3, ..., then {x}
is a Cauchy sequence in X.

Lemma 2.2. [13] Let (X, F, t) be a Menger space. If there exists a constant k < (0, 1) such that
Fx, y(kt) > Fx, y(t) forallx,y e Xandt>0, thenx =Y.

Proposition 2.2. In a Menger space (X, & t) if tx, X) > x, Vx e [0, 1] then
t(a, b) = min{a, b}, V a, b e [0, 1].

Proposition 2.3. Let {x,} be a Cauchy sequence in a Menger space (X, & t) with continuous t-norm t. If the
subsequence {X,,} converges to x in X, then {x,} also converges to x.

Proof. As {x,,} converges to X, we have

F ()2 t(Fm (;j F . (;D

Taking limit as n — oo we get lim,_,., Fy, «(€) = t(1, 1), which gives
limn_o Fxn x(€) =1; forall &> 0and the result follows.
A class of implicit relation. Let dbe the set of all real continuous functions
¢ (R+)4 — R, non-decreasing in the first argument with the property :
a. Foru,v>0, ¢(u,v,v,u)> 0 or ¢(u,v,u,v)> 0 implies that u>v.

b. o(u, u, 1, 1) > 0 implies that u > 1.
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Example 2.1. Define ¢(tq,t),t3,ty) = 18ty - 16ty + 8tg - 10t,. Then pe®.

I11. MAIN RESULT

Theorem 3.1. Suppose A, B, L, M, S and T be self mappings on a Menger space (X, € t) with continuous t-

norm t satisfying :

(3.1.1) L(X) = ST(X), M(X) = AB(X);

(3.12.2) AB =BA, ST =TS,LB=BL, MT =TM,;

(3.1.3) One of ST(X), M(X), AB(X) or L(X) is complete;

(3.1.4) The pairs (L, AB) and (M, ST) are occasionally weak-compatible;

(3.1.5) for some ¢ € @, there exists k € (0, 1) such that for all x, y € X and t> 0,

(FLx, My Fagx, sTy®: FLx, ABX®: Fivty, sTy(KD) 2 0
then A, B, L, M, Sand T have a unique common fixed point in X.

Proof. Suppose X € X. From condition (3.1.1) 3 X4, X5 € X such that
LXg=STx;=yg and Mxq=ABx,=Yj.
Inductively, we can construct sequences {x} and {yp} in X such that

Lxon =STXone1 =Yon  and  Mxppig = ABXonip = Yonsg
forn=0,1,2, ...
Step 1. Onputting X =Xoqand y =Xp1q in(3.1.5), we get

¢(FLX2n- MX2n+1(kt)' FABXZn: STX2n+1(t)’ FLXZn: ABXZn(t)’ FMX2n+1| STx2n+1(kt)) z 0.
Letting n — oo, we get

o, F ), F (kt)) > 0.

¢(FYZn, y2n+1(kt)’ Fy2n—1y Yon
Using (a), we get

Yans Yon1 Yon+1s Yon

FY2n, Y2n+1(kt) = FY2n-1, Y2n(t)'

Therefore, for all n even or odd, we have

FYna Yn+l(kt) = FYn—ly yn(t)'

Therefore, by lemma 2.1, {y,} is a Cauchy sequence in X.
Case I. ST(X) is complete.

In this case {yx} = {STxzn+1} is @ Cauchy sequence in ST(X), which is complete. Thus {yan:1}
converges to some z € ST(X).
By Proposition 2.3, we have

{Mxan1} >z and {STxonu1} > 2

{LXn} > 2 and {ABX;} > z.
As z € ST(X) there exists u € X such that z=STu:
Step I. Putting X = X, and y = u in (3.1.5) we get,
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O(FLxon, MuKD: FABxon, STU®: Fixon, ABxon O Fmu, sTu(kt) = 0.
Taking limitas n — oo, we get

0(F; Mmukt), F; 50, F, o), Fpgy (k) = 0

0(F; mukt), 1, 1, F; pykt) = 0
Using (a) we have Fz, My(kt) = 1, for all t > 0.
Hence Fz, Mmu® =1.
Thus z = Mu.
Hence STu=Mu=z. As (M, ST) is occasionally weak-compatible so we have

Mz = STz.

Step 1. Putting X = X,, and y = z in (3.1.5) we get,

O(FLxon, Mz(KD: FABxop, STZ: Fixon, ABxop (0 Fmz, sTZ(KD) 2 0
Taking limitas n — oo, we get

0(F, mz(kD), F5 20, F, ,(), Fpgz, oK) 2 0

0(Fz mz(k), 1,1, F, pqz (kD) = 0
Using (a) we have

FZ, mz(kt) = 1, for all t > 0.

Hence Fz, mz(® =1.
Thus z = Mz.
Step I11. Putting X = X,, and y = Tz in (3.1.5) we get,

OFLyon, MTz(KD FABxo,, sTTZO: FLxon, ABxon O FmTz, sTTZ(KD) > 0.
AsMT =TM and ST = TS we have MTz=TMz =Tz and ST(Tz) = T(STz) = Tz
Lettingn — oo, we get

4’(':2, Tz(kt)' Fz, Tz(t)’ Fz, z(t)’ FTz, Tz(kt)) 20

0(F, T,(kt), F, 1,(1),1,1)> 0
As ¢ is non-decreasing in the first argument, we have

o(F, 1,0, F, 1,(1).1,1) = 0.
Using (b), we get

Fz, T1z(0= 1 forallt>0.
Hence,

Fz, 12() =1, forallt>0,
ie. z=Tz
Now STz=Tz=zimpliesSz=z. HenceSz=Tz=Mz=2z.
Step IV. As M(X) < AB(X) there exists v e X such that z= Mz = ABv.
Putting X = v and y = X,n41 in (3.1.5), we get
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O(FLy, Mxops1 KD FABY, STxons1®: FLv, ABV®D: FMxops1, STxopsq D) 2 0.
Lettingn — oo, we get
O(FLy, (k) Fy o0, Fy 20, F, ;(kt)= 0
O(FLy, (k0. 1, Fy ,(1),1)= 0.
As ¢ is non-decreasing in the first argument, we have
o(FLy (0. L FLy ,(1),1)2 0.
Using (a), we have
FLV, ;) =1, forallt>0
which gives Lv =z.
Therefore, ABz = Lz.
Step V. Putting X =z and y = Xpn+1 in (3.1.5), we get
O(FLz, Mxon+1KD FABZ, STxons1®: FLz, ABZ(): FMxop+1, STxope1(KD) = 0.
Lettingn — o, we get
O(FLz, 2K Fz 20, F 7 | (0, F; ,(k)) =0
O(FLz, (kD) F, ,(),1,1)= 0.
As ¢ is non-decreasing in the first argument, we have
o(FLz /0 Fz 0.1, 1)20.
Using (b), we have FLz, =1, forallt>0
which gives Lz =z.
Therefore, ABz =Lz =z.
Step VI. Putting X = Bz and y = Xp+1 in (3.1.5), we get
O(FLBz, Mxon+1KD: FABBzZ, STxons1®: FLBZ, ABBZ(): FMxop+1, STXo[e1(KD) = 0.
As BL = LB, AB = BA, so we have L(Bz) = B(Lz) = Bz and AB(Bz) =B(ABz) = Bz. Lettingn — o, we get
¢(FBZ, (kD) FBz, 20, FBz, Bz(): l:z, (k)= 0
0(Fpz, z(kt). Fg; ,(1),1,1)= 0.
As ¢ is non-decreasing in the first argument, we have
¢(Fpz, (1), Fgz ,(1).1,1)= 0.
Using (b), we have FBz, A =1, forallt>0
which gives Bz =z and ABz = z implies Az = z.
Therefore Az=Bz=Lz=z.
Combining the results from different steps, we have
Az=Bz=Lz=Mz=Tz=Sz=1z
Hence the six self maps have a common fixed point in this case. Case when L(X) is complete follows from

above case as L(X) < ST(X).
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Case Il. AB(X) is complete. This case follows by symmetry. As M(X) < AB(X), therefore the result also holds
when M(X) is complete.
Uniqueness. Let u be another common fixed point of A, B, L, M, Sand T, then
Au=Bu=Lu=Su=Tu=Mu=u.
Puttingx=z and y=w in (3.1.5), we get
OFLz, Mw(KD: FaBz, sTw(®: FLz, ABZ(D: Fmw, sTW(KD) = 0
¢(Fz, wikb), F, w®, F, (), Fw. wik) =0
¢(Fz, wikb), F, w®, 1,1)>0.
As ¢ is non-decreasing in the first argument, we have
¢(Fz, w®, F,. w®, 1,1)>0.
Using (b), we have Fz, w(® = 1, forallt>0.
Thus, F. wd =1,
ie., Z=Ww.
Therefore, z is a uniqgue common fixed point of A, B, L, M, Sand T.
This completes the proof.
Remark 3.1. In view of proposition 2.2, t(a, b) = min{a, b}, theorem 3.1 is an alternate result of Pant et. al. [8],
reducing the semi-compatibility of the pair (L, AB) to its occasionally weak compatibility and dropping the
condition of continuity in a Menger space with continuous t-norm.
If we take B = T = I, the identity map in theorem 3.1, we get the following corollary.
Corollary 3.1. Let A, L, M and S be self mappings on a Menger space (X, & t) with continuous t-norm t
satisfying :

(3.1.6) L(X) = S(X), M(X) = A(X);

(3.1.7) One of S(X), M(X), A(X) or L(X) is complete;

(3.1.8) The pairs (L, A) and (M, S) are occasionally weak-compatible;

(3.1.9) for some ¢ € @, there exists k € (0, 1) such that for all x, y € X and t > 0,

O(FLx, My(KD: Fax, sy(®: FLx, ax(®: Fimy, sy(kt) = 0

then A, L, M and S have a unique common fixed point in X.
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