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ABSTRACT  

The object of this paper is to establish a unique common fixed point theorem for six self 

mappings using the concept of occasionally weak-compatibility in Menger space which is an 

alternate result of Pant et. al. [8] .  
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I. INTRODUCTION 

There have been a number of generalizations of metric space. One such generalization is Menger space initiated 

by Menger [6]. It is a probabilistic generalization in which we assign to any two points x and y, a distribution 

function Fx,y.  Schweizer and Sklar [9] studied this concept and  gave some fundamental results on this space.  

Sehgal and Bharucha-Reid [10] obtained a generalization of Banach Contraction Principle on a complete 

Menger space which is a milestone in developing fixed-point theory in Menger space. 

Recently, Jungck and Rhoades [5] termed a pair of self maps to be coincidentally commuting or equivalently 

weakly compatible if they commute at their coincidence points. Sessa [11] initiated the tradition of improving 

commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces.  

Jungck [4] soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger 

space has been introduced by Mishra [7].  The concept of weak compatible mappings  is most general among all 

the commutativity concepts in this field as every pair of R-weakly commuting maps is compatible and each pair 

of compatible maps is weak-compatible but the reverse is not true always. 

The intent of this paper is to generalize the result of Pant et. al. [8].  So, our generalization in this paper is two 

fold as 

(i) Relaxed continuity of maps completely 

(ii) Weakened the concept of semi-compatibility by a more general concept of occasionally weak 

compatible.  
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II. PRELIMINARIES 

Definition 2.1.[7]  A mapping F : R R+ is called a  distribution if it is non-decreasing left continuous with  

 inf { F (t) | t  R } = 0    and    sup { F (t) | t   R} = 1. 

We shall denote by L the set of all distribution functions while H will always denote the specific distribution 

function defined by  

  0 , t 0
H(t) .

1 , t 0


 



 

Definition 2.2. [7] A mapping t :[0, 1] × [0, 1]  [0, 1] is called a t-norm  if  it  satisfies the following 

conditions : 

(t-1)   t(a, 1) = a,       t(0, 0) = 0 ; 

(t-2)   t(a, b) =  t(b, a) ; 

(t-3)   t(c, d)   t(a, b) ;     for c  a, d  b, 

(t-4)   t(t(a, b), c) =  t(a, t(b, c))  for all a, b, c, d [0, 1]. 

Definition 2.3. [7] A probabilistic metric space (PM-space) is an ordered pair (X, F) consisting of a non empty 

set X and a function F : X × X  L, where L is the collection of all distribution functions and the value of F at 

(u, v)  X × X is represented by  Fu, v. The function Fu,v assumed to satisfy the following conditions: 

(PM-1 ) Fu,v(x) = 1, for all x > 0, if and only if  u = v; 

(PM-2)  Fu,v (0) = 0; 

(PM-3)  Fu,v = Fv,u; 

(PM-4)  If Fu,v (x) = 1 and Fv,w (y) = 1 then Fu,w (x + y) = 1,  

for all u, v, w  X and x, y > 0.  

Definition 2.4. [7] A Menger space is a triplet (X, F, t) where (X, F) is a PM-space and t is a t-norm such that 

the inequality 

(PM-5)  Fu,w (x + y)  t {Fu, v (x), Fv, w(y) }, for all u, v, w X, x, y  0. 

Definition 2.5. [9] A sequence {xn} in a Menger space (X, F, t) is said to be convergent and converges to a 

point x in X if and only if for each  > 0 and  > 0, there is an integer M(, ) such that   

   Fxn, x () > 1 -   for all n  M(, ).   

Further the sequence {xn} is said to be Cauchy sequence if for   > 0 and   > 0, there is an integer M(, ) such 

that  

   Fxn, xm
() > 1-   for all m, n  M(, ).  

A Menger PM-space (X, F, t) is said to be complete if every Cauchy sequence in X converges to a point in X. 

A complete metric space can be treated as a complete Menger space in the following way : 

Proposition 2.1. [7] If (X, d) is a metric space then the metric d induces mappings  

F : X × X  L,  defined by Fp,q(x) = H(x - d(p, q)), p, q X, where  
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  H(k) = 0,    for k  0   and   H(k) = 1,   for k >0. 

  Further if,  t : [0,1] × [0,1] [0,1] is defined by t(a,b) = min {a, b}. Then (X, F, t) is a Menger space.  It is 

complete if (X, d) is complete. 

The space (X, F, t) so obtained is called the  induced Menger space. 

Definition 2.6. [2] Self mappings A and S of a Menger space (X, F, t) are said to be weak compatible if they 

commute at their coincidence points i.e. Ax = Sx   for x X  implies  ASx = SAx. 

Definition 2.7.  Two self mappings f and g of a Menger space (X, F, t) are said to be occasionally weak 

compatible if there is a point x  X which is coincidence point of f and g at which f and g commute. 

Definition 2.8. [3] Self mappings A and S of a Menger space (X, F, t) are said to be compatible if   

FASxn, SAxn
(x)  1 for all x > 0, whenever {xn} is a sequence in X such that Axn, Sxn  u for some u in X, 

as n. 

Definition 2.8. [8] Self maps S and T of a Menger space (X, F, t) are said to be semi-compatible if FSTxn, Tu 

(x)  1 for all x  > 0,  whenever {xn} is a sequence in X such that Sxn, Txn  u for some u in X, as n . 

It follows that if (S, T) is semi compatible and Sx = Tx then STx = TSx. Thus if the pair (S, T) is semi-

compatible then it is occasionally weakly compatible. The converse is not true. 

Remark 2.1. Every semi-compatible pair of self-maps is occasionally weak compatible but the reverse is not 

true always.   

Lemma 2.1. [13] Let {xn} be a sequence in a Menger space (X, F, t) with continuous t norms t and t(a, a) a. 

If there exists a constant k (0, 1) such that  Fxn,xn+1
(kt) Fxn-1, xn

(t) for all t 0 and n = 1, 2, 3, ..., then {xn} 

is a Cauchy sequence in X.  

Lemma 2.2. [13] Let (X, F , t) be a Menger space. If there exists a constant k (0, 1) such that   

Fx, y(kt) Fx, y(t) for all x, y X and t > 0, then x = y.  

Proposition 2.2. In a Menger space (X, F, t) if t(x, x)  x, x  [0, 1] then  

t(a, b) = min{a, b},  a, b  [0, 1].  

Proposition 2.3. Let {xn} be a Cauchy sequence in a Menger space (X, F, t) with continuous t-norm t. If the 

subsequence {x2n} converges to x in X, then {xn} also converges to x. 

Proof. As {x2n} converges to x, we have 

n n 2n 2nx ,x x ,x x ,x
F ( ) t F ,F .

2 2

     
      

    
 

Taking limit as n  we get limn Fxn, x()    t(1, 1), which gives  

limn Fxn, x()  = 1;  for all   > 0 and the result follows. 

A class of implicit relation.  Let be the set of all real continuous functions  

: (R+)4 R, non-decreasing in the first argument with the property : 

a. For u, v 0,  (u, v, v, u) 0  or  (u,v,u,v)0 implies that u v. 

b. (u, u, 1, 1) 0 implies that u 1. 



 

79 | P a g e  

Example 2.1. Define  (t1,t2,t3,t4) = 18t1 - 16t2 + 8t3 - 10t4.  Then . 

 

III. MAIN RESULT 

 

Theorem 3.1. Suppose A, B, L, M, S and T be self mappings on a Menger space  (X, F, t) with  continuous t-

norm t satisfying : 

(3.1.1)  L(X)   ST(X),  M(X)   AB(X); 

(3.1.2)  AB = BA, ST = TS, LB = BL, MT = TM; 

(3.1.3)  One of ST(X), M(X), AB(X) or L(X) is complete; 

(3.1.4)   The pairs (L, AB) and (M, ST) are occasionally weak-compatible;  

 (3.1.5)  for some , there exists k (0, 1) such that for all x, y X and t > 0,  

  (FLx, My(kt), FABx, STy(t), FLx, ABx(t), FMy, STy(kt))  0 

then  A, B, L, M, S and T have a unique common fixed point in X.   

Proof.  Suppose x0  X.  From condition (3.1.1)    x1, x2  X  such that   

  Lx0 = STx1 = y0     and     Mx1 = ABx2 = y1.   

 Inductively, we can construct sequences {xn} and {yn} in X such that 

 Lx2n = STx2n+1 = y2n      and      Mx2n+1 = ABx2n+2 = y2n+1     

        for n = 0, 1, 2, ... .  

Step 1.  On putting  x = x2n and  y = x2n+1  in (3.1.5), we get 

 (FLx2n, Mx2n+1
(kt), FABx2n, STx2n+1

(t), FLx2n, ABx2n
(t), FMx2n+1, STx2n+1

(kt))  0. 

Letting n , we get 

 (Fy2n, y2n+1
(kt), Fy2n-1, y2n

(t), Fy2n, y2n-1
(t), Fy2n+1, y2n

(kt))  0. 

Using (a), we get 

 Fy2n, y2n+1
(kt)  Fy2n-1, y2n

(t). 

Therefore, for all n even or odd, we have 

 Fyn, yn+1
(kt)  Fyn-1, yn

(t). 

 Therefore, by lemma  2.1, {yn} is a Cauchy sequence in X.  

Case I.  ST(X) is complete.  

In this case {y2n} = {STx2n+1} is a Cauchy sequence in ST(X), which is complete. Thus {y2n+1} 

converges to some z  ST(X). 

By Proposition 2.3, we have 

   {Mx2n+1}  z  and   {STx2n+1} z 

   {Lx2n}  z   and  {ABx2n}  z. 

As z  ST(X) there exists u  X such that z = STu: 

Step I. Putting x = x2n and y = u in (3.1.5) we get,  
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(FLx2n, Mu(kt), FABx2n, STu(t), FLx2n, ABx2n
 (t), FMu, STu(kt))  0. 

Taking  limit as n , we get 

(Fz, Mu(kt), Fz, z(t), Fz, z(t), FMu, z(kt))  0 

(Fz, Mu(kt), 1, 1, Fz, Mu(kt))  0 

Using (a) we have Fz, Mu(kt) ≥ 1, for all t > 0.  

Hence Fz, Mu(t) = 1.  

Thus z = Mu. 

Hence STu = Mu = z.  As (M, ST) is occasionally weak-compatible so we have  

Mz = STz. 

Step II. Putting x = x2n and y = z in (3.1.5) we get,  

(FLx2n, Mz(kt), FABx2n, STz(t), FLx2n, ABx2n
 (t), FMz, STz(kt))  0 

Taking  limit as n , we get 

(Fz, Mz(kt), Fz, z(t), Fz, z(t), FMz, z(kt))  0 

(Fz, Mz(kt), 1, 1, Fz, Mz(kt))  0 

Using (a) we have  

Fz, Mz(kt) ≥ 1, for all t > 0.  

Hence Fz, Mz(t) = 1.  

Thus z = Mz. 

Step III. Putting x = x2n and y = Tz in (3.1.5) we get,  

(FLx2n, MTz(kt), FABx2n, STTz(t), FLx2n, ABx2n
 (t), FMTz, STTz(kt))  0. 

As MT = TM and ST = TS we have MTz = TMz = Tz and ST(Tz) = T(STz) = Tz.  

Letting n   we get 

(Fz, Tz(kt), Fz, Tz(t), Fz, z(t), FTz, Tz(kt))  0 

(Fz, Tz(kt), Fz, Tz(t), 1, 1)  0 

As is non-decreasing in the first argument, we have 

(Fz, Tz(t), Fz, Tz(t), 1, 1)  0. 

Using (b), we get 

Fz, Tz(t)  1  for all t > 0.  

Hence, 

 Fz, Tz(t)  = 1, for all t > 0, 

i.e. z = Tz. 

Now STz = Tz = z implies Sz = z.    Hence Sz = Tz = Mz = z. 

Step IV.  As M(X)  AB(X) there exists v X such that z = Mz = ABv.  

Putting x = v and y = x2n+1 in (3.1.5), we get 
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(FLv, Mx2n+1
(kt), FABv, STx2n+1

(t), FLv, ABv(t), FMx2n+1, STx2n+1
(kt))  0. 

Letting n   we get 

(FLv, z(kt), Fz, z(t), FLv, z(t), Fz, z(kt))  0 

(FLv, z(kt), 1, FLv, z(t), 1)  0. 

As is non-decreasing in the first argument, we have 

(FLv, z(t), 1, FLv, z(t), 1)  0. 

Using (a), we have  

FLv, z(t) ≥ 1, for all t > 0 

which gives  Lv = z. 

Therefore,  ABz = Lz. 

Step V. Putting x = z and y = x2n+1  in (3.1.5), we get 

(FLz, Mx2n+1
(kt), FABz, STx2n+1

(t), FLz, ABz(t), FMx2n+1, STx2n+1
(kt))  0. 

Letting n   we get 

(FLz, z(kt), FLz, z(t), FLz, Lz(t), Fz, z(kt))  0 

(FLz, z(kt), FLz, z(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

(FLz, z(t), FLz, z(t), 1, 1)  0. 

Using (b), we have   FLz, z(t) ≥ 1, for all t > 0 

which gives  Lz = z. 

Therefore, ABz = Lz = z. 

Step VI. Putting x = Bz and y = x2n+1  in (3.1.5), we get 

(FLBz, Mx2n+1
(kt), FABBz, STx2n+1

(t), FLBz, ABBz(t), FMx2n+1, STx2n+1
(kt))  0. 

As BL = LB, AB = BA, so we have L(Bz) = B(Lz) = Bz and AB(Bz) =B(ABz) = Bz. Letting n   we get 

(FBz, z(kt), FBz, z(t), FBz, Bz(t), Fz, z(kt))  0 

(FBz, z(kt), FBz, z(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

(FBz, z(t), FBz, z(t), 1, 1)  0. 

Using (b), we have  FBz, z(t) ≥ 1, for all t > 0 

which gives   Bz = z and ABz = z implies Az = z. 

Therefore Az = Bz = Lz = z.  

Combining the results from different steps, we have  

Az = Bz = Lz = Mz = Tz = Sz = z.  

Hence the six self maps have a common fixed point in this case.  Case when L(X) is complete follows from 

above case as L(X)  ST(X). 
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Case II. AB(X) is complete. This case follows by symmetry. As M(X)  AB(X), therefore the result also holds 

when M(X) is complete. 

Uniqueness. Let u be another common fixed point of A, B, L, M, S and T, then  

Au = Bu = Lu = Su = Tu = Mu = u.  

Putting x = z   and    y = w   in   (3.1.5), we get 

 (FLz, Mw(kt), FABz, STw(t), FLz, ABz(t), FMw, STw(kt))  0 

 (Fz, w(kt), Fz, w(t), Fz, z(t), Fw, w(kt))  0 

 (Fz, w(kt), Fz, w(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, w(t), Fz, w(t), 1, 1)  0. 

Using (b), we have    Fz, w(t)  1, for all t > 0. 

Thus,  Fz, w(t) = 1,  

i.e.,  z = w. 

 Therefore, z is a unique common fixed point of A, B, L, M, S and T. 

 This completes the proof. 

Remark 3.1. In view of proposition 2.2, t(a, b) = min{a, b}, theorem 3.1 is an alternate result of Pant et. al. [8], 

reducing the semi-compatibility of the pair (L, AB) to its occasionally weak compatibility and dropping the 

condition of continuity in a Menger space with continuous t-norm. 

If we take B = T = I, the identity map in theorem 3.1, we get the following corollary. 

Corollary 3.1. Let A, L, M and S be self mappings on a Menger space  (X, F, t) with  continuous t-norm t 

satisfying : 

(3.1.6)  L(X)   S(X),  M(X)   A(X); 

(3.1.7)  One of S(X), M(X), A(X) or L(X) is complete; 

(3.1.8)   The pairs (L, A) and (M, S) are occasionally weak-compatible;  

 (3.1.9)  for some , there exists k (0, 1) such that for all x, y X and t > 0,  

  (FLx, My(kt), FAx, Sy(t), FLx, Ax(t), FMy, Sy(kt))  0 

then  A, L, M and S have a unique common fixed point in X.   
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