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ABSTRACT 

In this paper we formulate the prevention of false nodes in wireless sensor networks as a 

repeated game between an intrusion detector and nodes of a sensor network, where some 

of these nodes act maliciously. We propose a protocol based on game theory which 

achieves the design objectives of truthfulness by recognizing the presence of nodes that 

agree to forward packets but fail to do so. This approach categorizes different nodes based 

upon their dynamically measured behavior. Through simulation we evaluate proposed 

protocol using packet throughput and the accuracy of misbehaving node detection.   
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I. INTRODUCTION 

1.1 Description Abour Repeated Game Theory 

Repeated games are an important tool for understanding concepts of “reputation” and “punishment” in game 

theory. This section introduces the setting of the repeated game, the strategies available to repeated game 

players, and the relevant notions of equilibria. 

In a repeated game formulation, players participate in repeated interactions within a potentially infinite time 

horizon. Players must, therefore, consider the effects that their chosen strategy in any round of the game will 

have on opponents‟ strategies in subsequent rounds. Each player tries to maximize her expected payoff over 

multiple rounds. A wireless sensor network (WSN) is a network of thousands of resource-constrained sensors 

whose communications with a central station are conveyed by means of wireless signals. A sensor node is 

generally comprised of four basic elements, including a sensing unit, a processing unit, a transceiver unit, and a 

power unit. The WSN is frequently deployed for sensing the area of interest where data captured encompass 

light, pressure, sound, and others. Sensor nodes in WSN mainly use a broadcast communication paradigm where 

the sensor signals are used in further analyses of the sensed environment. WSN is preferred as the sensor system 



 

539 | P a g e  

 

architecture with regard to its inherent redundancy but is susceptible to disadvantages caused by limited 

operation life-time. Differ from other wired networks, the use of WSNs are usually restricted by energy stored, 

computation capability, memory, plethoric information flow, and short communication distance . Since the 

sensor nodes are often densely deployed in a sensing field, it is difficult and costly to replace faulty sensor nodes 

manually. Furthermore, sensor nodes may have no global information of the whole network and the topology of 

a WSN varies frequently . The game types for preventing DoS attacks include non-cooperative game  

cooperative game  and repeated game  The jamming and anti-jamming issues are modeled as a zero-sum 

stochastic game in literature  to defend DoS attack. In this game, the actions of the sensor and jammer are 

dependent on the current system state. A quadratic function is used as the payoff function, thus facilitating the 

LQG control of the power system. The NE of the game is analyzed, including the existence and the 

corresponding computation. Numerical simulations  are carried out for a seven-dimensional linear system of 

power grid and demonstrate the increase of reward when proper anti-jamming actions are taken established an 

attacking-defending gaming model which can detect active DoS attacks effectively, where the strategy space 

and payoff matrix are given to both the IDS and the malicious nodes. 

Here we formulate the prevention of passive denial of service (DoS) attacks in wireless sensor 

networks as a repeated game between an intrusion detector and nodes of a sensor network, 

where some of these nodes act maliciously. Intrusion detection systems (IDSs) extend the 

information security paradigm beyond traditional protective network security. They monitor the 

events in the system and analyze them for any sign of a security problem . Considering current 

intrusion detection systems, there is definitely a need for a framework to address attack modeling 

and response actions. 

Game theory addresses problems where multiple players with different objectives compete and 

interact with each other in the same system; such a mathematical abstraction is useful for 

generalization of the problem. In order to prevent DoS, we capture the interaction between a 

normal and a malicious node in forwarding incoming packets, as a non-cooperative N player 

game . The intrusion detector residing at the base station keeps track of  nodes‟  collaboration  by  

monitoring  them.   If  performances are lower than some trigger thresholds, it means that some 

nodes act maliciously by deviation. The IDS rates all the nodes, which is known as subjective 

reputation  and the positive rating accumulates for each node as it gets rewarded. Our proposed 

framework enforces cooperation among nodes and provides punishment for non-cooperative 

behavior. 

 

1.2 Prisoner’s Dilemma 

To understand the concept of repeated games, let us start with an example, which is known as 

the Prisoner‟s  Dilemma in  which  two  criminals  are  arrested and charged with a crime.  The 

police do not have enough evidence to convict the suspects, unless at least one con- fesses.  The 

criminals are in separate cells, thus they are not able to communicate during the process. If 

neither confesses, they will be convicted of a minor crime and sentenced for one month. The police 
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offers both the criminals a deal. If one confesses and the other does not, the confessor one will be 

released and the other will be sentenced for 9 months. If both confess, both will be sentenced for 

six months. This game has a unique Nash equilibrium in which each player chooses to cooperate 

in a single-shot setting. 

However, in a more realistic scenario a particular one shot game can be played more than once, in 

fact a realistic game could even be a correlated series of one shot games. So what a player does 

early on can affect what others choose to do later on. In particular, one can strive to explain how 

cooperative behavior can be established as a result of rational behavior. This does not mean that 

the game never ends; we will see that this framework is appropriate for modeling a situation when 

the game eventually ends but players are uncertain about exactly when the last period is. 

Now  in  the  prisoner‟s  dilemma,  suppose  that  one  of the players adopts the following long-term 

strategy: (1) choose to cooperate as long as the other player chooses to cooperate, (2) if in any 

period the other player chooses to defect, then choose to defect in every subsequent period. What 

should the other player do in response to this strategy? This kind of games is known as repeated 

games with sequences of history-dependent game strategies. 

 

We model the interaction between nodes (normal or malicious) and IDS in a sensor network as a 

repeated game. N players play a non-cooperative game at each stage of the game, where players 

of the game are an IDS residing at the base-station and N sensor nodes. We first define the stage 

game, then define the uncertainty that players have about the game. Finally, we define what 

strategies the players can have in the repeated game. 

Consider a game G (which we‟ll call the stage game or the constituent game). As usual we let the player set be 

I={1,…,n}. In our present repeated-game context it will be clarifying to refer to a player‟s stage game choices as 

actions rather than strategies. (We‟ll reserve “strategy” for choices in the repeated game.) So each player has a 

pure-action space Ai. The space of action profiles is iii AXA  . Each player has a von Neumann-Morgenstern 

utility function defined over the outcomes of G, RAui : . Here we use “U”  for the payoff to the entire 

repeated game.) 

Let G be played several times (perhaps an infinite number of times) and award each player a payoff which is the 

sum of the payoffs she got in each period from playing G. Then this sequence of stage games is itself a game: a 

repeated game or a super game. Two statements are implicit when we say that in each period we‟re playing the 

same stage game: 

a. For each player the set of actions available to her in any period in the game G is the same regardless of which 

period it is and regardless of what actions have taken place in the past. 

b. The payoffs to the players from the stage game in any period depend only on the action profile for G which 

was played in that period, and this stage-game payoff to a player for a given action profile for G is independent 

of which period it is played. 
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Statements a and b are for our repeated game is stationary (or, alternatively, independent of time and history). 

This does not mean the actions themselves must be chosen independently of time or history. 

Then we interpret a and b above as saying that the payoff matrix is the same in every period. 

We make the typical “observable action” or “standard signaling” assumption that the play which occurred in 

each repetition of the stage game is revealed to all the players before the next repetition. Therefore even if the 

stage game is one of imperfect information (as it is in simultaneous-move games)—so that during the stage 

game one of the players doesn‟t know what the others are doing/have done that period—each player does learn 

what the others did before another round is played. This allows subsequent choices to be conditioned on the past 

actions of other players. 

Consider a game G, which will be called the stage game. Let the players/nodes set to be  

I = {1, · · · , N }, and  refer  to  a  node‟s  stage  game choices  as actions.   So each node has an action 

space Ai. If it is a malicious node then sometimes its action is dropping of the incoming packets. 

We‟ll refer to the action of the stage game G which player i executes in period t as 
t

ia . The action profile played 

in period t is just the n-tuple of individuals‟ stage-game actions  t

n

tt

t aaaa .......,, 21 …………. (1) 

We want to be able to condition the players‟ stage-game action choices in later periods upon actions taken 

earlier by other players. To do this we need the concept of a history: a description of all the actions taken up 

through the previous period. We define the history at time t to be   110 .......,,  tt aaah  …………..(2) 

In other words, the history at time t specifies which stage-game action profile (i.e., combination of individual 

stage-game actions) was played in each previous period. Note that the specification of 
th includes within it a 

specification of all previous histories  110 .......,, thhh . For example, the history 
th  is just the concatenation 

of 
1th with the action profile 

1ta ; i.e. 
th =(

1th  , 
1ta  ) The history of the entire 

game is  TT aaah .......,, 101 
Note also that the set of all possible histories 

th  at time t is just     

AXA
t

t

t
1

0




  ……………………..   (3) 

To condition our strategies on past events, then, is to make them functions of history. So we write player i‟s 

period-t stage-game strategy as the function 
t

is , where 
t

ia =
t

is (
th ) 

 is the stage-game action would play in period t if the previous play had followed the history 
th . A player‟s 

stage-game action in any period and after any history must be drawn from her action space for that period, but is 

the stage-game action would play in period t if the previous play had followed the history 
th . A player‟s stage-

game action in any period and after any history must be drawn from her action space for that period, but because 

the game is stationary her stage-game action space Ai does not change with time. Therefore we write:  
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i 

    i

tt

i

tt AhsAhtIi  )( . Alternatively, we can write   tIi  t

is : i

t

i AA   

The period-t stage game strategy profile
ts is  t

n

ttt ssss ......., 21  

This profile can be described by 
t

is : AAs tt ; (i.e)  )(.).........(),()(, 21

tt

n

tttttttt hshshshsAh   

Let at refer to the action of the stage game G which node i executes in period t. The action 

profile played in period t  is just the n-tuple of individuals‟ stage game actions 

 t

n

ttt aaaa .......,, 21 .We  want  to  be  able  to condition the nodes‟ stage game action choices in later 

periods upon actions taken earlier by other nodes. To do so, we need the concept of history which is 

a description of all the actions taken up through the previous periods. We define the history at time t  

as   110 .......,,  tt aaah In other words, the history at time t specifies which stage game action 

profile was played in each previous period. So we write node i‟s period-t stage game as the function 

st,where 
t

ia =
t

is (
th ) is the stage game action it would play in period t if the previous play had 

followed the history ht. When the game starts there is no past play, every node executes its 
0

ia  stage 

game. This zero-th period play generates the history )( 01 ah  which We now define the players‟ payoff 

functions for the repeated game. When studying will be recorded at the base station, where 

 00

2

0

1

0 .......,, naaaa  . The history is then revealed to the IDS so that it can condition its period-1 play upon 

the period-o play. It means that if a node is acting maliciously, by keeping history of game, the IDS is able to 

notify neighbouring nodes of a malicious one. Each node chooses its   t=1  stage game, strategy s1(h1). 

Consequently, in the t = 1 stage game the stage game strategy profile a1 = s1(ht) = (s1(h1), · · · , s1 

(h1))  is played.  

Each node i has a von Neumann-Morgenstern utility function defined over the outcomes of the 

stage game tt, as ui : A → R, where A is the space of action profiles. Let G be played several times 

and let us award each node a payoff which is the sum of the payoffs it got in each period from 

playing G. Then this sequence of stage games is itself a game, called a repeated game. 

Here,
t

i

t

i

t

i cru   where 
t

ir  is the gain of node i‟s reputation 
t

ic  is the cost of forwarding a 

packet for the node, and α and β are weight parameters. We assume that   measurement data can 

be included in a single message that we call a packet. Packets all have the same size. The 

transmission cost for a single packet is a function of the transmission distance. In particular, we 

assume ct = cr.dµ, where cr is a constant i that includes antenna Characteristics, d is the distance 

of the transmission and µ is the path loss exponent 

 

By assuming that in each period the same  stage game is being played, two statements  

 are implicit: 
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• For each node, the set of actions available to it in any period in the game G is the same 

regardless of which period it is and regardless of what actions have taken place in past. 

• The payoffs to the nodes from the stage game in any period depend only on the action 

profile for G which was played in that period, and this stage game payoff to a node for a 

given action profile for G  is independent of which period it is played. 

repeated games, we are concerned about a player who receives a payoff in each of many periods. In 

order to represent the performance over various payoff streams, we want to meaningfully 

summarize  the desirability of such a sequence of payoffs by    a single number. A common 

assumption is that the player wants to maximize a weighted sum of its per-period pay- offs, 

where it weights later periods less than earlier periods. For simplicity this assumption often takes 

the particular form that the sequence of weights forms a geometric series for some fixed δ ∈ (0, 

1), each weighting factor is δ  times the previous weight.  δ  is called discount   factor. 

If in each period t, player i receives the payoff ut, then we could summarize the desirability of the 

payoff stream 

......., 10

ii uu , by the number: 

                     

t

i

t

t

tu





0

)1(,   

 

Such a preference structure has the desirable property that the sum of the weighted payoffs will   

be finite. It is often convenient to compute the average discounted value of an infinite payoff stream 

in terms of a leading finite sum and the sum of a trailing infinite stream.  For    example, suppose 

that the payoffs vt a player receives are some constant payoff vr  for the first t periods, and 

thereafter  it receives a different constant payoff vrr in each period. The average discounted value 

of this payoff stream is: 
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
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
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





1
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)1()1(
t

t

t

i
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i

tt

i
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


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Now we need to specify the strategies for each of these players. Each node makes the decision 

whether to (1) accept a packet and forward it to improve its own reputation in the network, we 

call this action “Normal”; or (2) do not cooperate and save battery life and stay selfish, we call this 

action “Malicious”.  On the other hand, IDS always wants to catch a malicious node but it de- pends 

on how well it can detect an intrusion. Thus the output  of  IDS  actions  are  either  (1)  “Catch”  a  node  
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as malicious,  or  (2)  “Miss”  it.   As  depicted  in  Figure  1,  in cases of false positives and false 

negatives, payoff of one player is the maximum when it is the minimum for the other player. The 

most important  case  (rewarding  for IDS) is when a node acts maliciously and IDS is able       to 

catch it. IDS has different utility  values  based  on which case happens and how we would like to give 

different weights to false positives and false negatives detections. For simplicity, we assume 

 U (Miss, Normal) = v , U (Catch, Normal) = v  ,  

U (Miss, Malicious) = v   and  

U (Catch, Malicious) = 'v   

At each stage game, the  IDS  concurrently plays an N -person game with N different nodes and 

several possible strategies can be described for it. We want a strategy that punishes it even for its 

own past deviations (false negatives). We define the utility of IDS as:  

UIDS = γ1 'v   − γ2 v    − γ3 v  , where each γi represents the number of occurrences of case i.  We 

consider the following retaliation strategy for IDS: in the initial period every node plays 

cooperatively and so IDS does not catch anyone; in later periods, IDS does not catch if the node 

has always played normal. However, if a node acts maliciously, then the IDS catches it for the 

remainder of  the game. More formally, the IDS has the following strategy: 

 

 












 

otherwisecatch

normalaifmiss

tifmiss

hs t

i

t

IDS

1

0

 

 

Each node in the initial period plays normally and so IDS does not catch anyone, in later periods, 

a node does  not act maliciously if the IDS has missed it. However, if the IDS catches a node, 

then the node acts maliciously for the remainder of the game.  More formally for a node  i, 

 

 












 

otherwisemalicious

missaifnormal

tifnormal

hs t

i

t

IDS

1

0

 

 

 

First, we show that the above strategies reach to Nash- equilibrium of the repeated game. Both 

players (sensor nodes and IDS) play cooperatively at t = 0. Therefore at t = 1, the history is h1 = 

(Miss, Normal); so they both play cooperatively again. Therefore at t = 2, the history is h2 = 

((Miss, Normal), (Miss, Normal)), and so on. The repeated game payoff to each player 

corresponding to this path is trivial to  calculate. 
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i 

i 

Can IDS gain from deviating from the repeated game strategy given that a sensor node is  faithfully  

following it? Let t be the period in which IDS first deviates. It receives a payoff of v in the first t 

periods and in period t, IDS plays “Catch” while sensor node played “Normal”, yielding IDS a payoff 

of v  in that period. This defection by IDS  triggers “Malicious” always response from node. The 

best response of IDS to this strategy is to “Catch” in every period itself.  Thus it receives v     in 

every period    t + 1, t + 2, · · · . 

To calculate the average discounted value of this pay-off stream, we see that the player receives 

v  for the first t periods, then receives v   only in period t and receives i every period 

thereafter. Therefore, the average dis- counted value of this stream is: 

 

(1 − δt) v+ δt[(1 − δ) v   + δ 'v  ]. 

By solving the above inequality for δ and calculating  the average discount value of this payoff, while 

substituting 'v   > v   > v  > v  , one possible discount factor necessary to sustain cooperation is δ 

≥ 1/2. In other words, for δ ≥ 1/2, the deviation is not profitable. This means that if IDS is sufficiently 

patient (i.e.,  if δ  ≥ 1/2) then  the strategy of retaliation is a Nash equilibrium of the in- finitely 

repeated game. We see that with this strategy the optimal response for IDS is to cooperate and not 

deviate.  In other words, in any stage game reached by some player having  “defected”  in  the  past,  

each  player  chooses  the strategy “defect  always”.  Therefore,  the  repeated  game strategy profile is 

a sequence of Nash-equilibria. 

 

1.3 Payoff and Reputation 

The problem of generating reliable information in sensor networks can be reduced to one basic 

question: How do sensor nodes trust each other? Embedded in every social network is a web of 

trust with a link representing the amount of trust between two individuals. Here IDS monitors the 

behavior of other nodes, based on which it builds up their reputation over time. It uses this 

reputation to evaluate their trustworthiness and in predicting their future behavior. At the time of 

collaboration, a node only cooperates with those nodes that it trusts. Here the objective is to 

generate a group of trustworthy sensor nodes. In  order  to  compute  the  values  of  a  node‟s  gain,  

we turn our attention to the work proposed in [20]. In this work the authors proposed the concept 

of subjective reputation,     which reflects the reputation calculated directly from the subject‟s 

observation.  In order to compute each node‟s gain at time t, we use the following formula: 

)(
1

1

kr
t

i

t

i 


   

where ρi(k) represents the ratings that the IDS has given to node i, and ρi ∈ [−1, 1]. If the number 

of observations collected since time t is not sufficient, the final value of the subjective reputation 
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  7 hops 

  5 hops 

takes the value 0. IDS increments the ratings of nodes on all actively used paths at periodic 

intervals. An actively used path is one on which the node has sent a packet within the previous 

rate increment interval. Recall that reputation is the perception that  a  person  has  of  another‟s  

intentions.   When  facing uncertainty, individuals tend to trust those who have a reputation for 

being trustworthy. Since reputation is not  a physical quantity and only a belief, it can be used to 

statistically predict the future behavior of other nodes and can not define deterministically the 

actual action performed by them. Table 2 depicts the notations that were used throughout this 

paper. 

 

1.4 Protocol Description 

In this proposed protocol a node sends out a route request message. All route receiving the 

message compute their utility based on their local reputation and cost, place themselves into 

the source route and forward it to their neighbors, unless they have   received the same request 

be- fore. If a receiving node is the destination, or has a route to the destination, it does not 

forward the request, but sends a Reply message  containing the full source route with the total 

utility. After receiving one or several routes, the source selects the best one having the highest 

utility, which means this route consists of the most reputed possible nodes; stores it and sends 

messages along that path. Once a route request reaches its destination, the path that this route 

request has taken is reversed and sent back to the sender. As the destination notifies the base 

station of the receipt of the packet, the  
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base station gives a higher reputation value to every node on the route, and broadcasts the new 

reputation values to nodes.  As each node is aware of   its neighboring node (in its transmission 

range), it will update  the  reputation table. 

This protocol ensures a view on which nodes will pro- vide likely service due to their 

commitment, as they want to increase their reputation in the network. IDS also want to 

recognize the malicious nodes and isolates them from participating in network functions but it 

would prefer not to risk it and have the least amount of false detections, to increase its own 

utility.  The benefit of  using   a framework based on repeated games is that, the base station has 

a history of the previous games and when a node is malicious it gets a negative reputation when 

the total reputation accumulates, a path consisting of less number of malicious nodes is chosen 

to be the wining path. This results in isolation of malicious nodes. 

    

. 

II. CONCLUSION 

Infinite repetition can be the key for obtaining behavior in the stage games which could not be 

equilibrium behavior if the game were played once or a known finite number of times. In the 

proposed protocol, IDS rates nodes through a monitoring mechanism. The observations 

collected by the monitoring mechanism are processed to evaluate reputation of each node. We 

ensure the finiteness of the repeated-game payoffs by introducing discount of future payoffs 

relative to earlier payoffs. 
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