

299 | P a g e

DMA FOR FIELD PROGRAMMABLE GATE

ARRAY- BASED RECONFIGURABLE

ARCHITECTURES

Naveen Kumar Mandadi

1
, G.Ravindar Reddy

2
, Ch.Raghu Rama Raju

3

1,2,3
Assistant Professor, Department of ECE, SRTIST, Nalgonda (India)

ABSTRACT

In this paper, an adaptive architecture for dynamic management and allocation of on-chip FPGA

Block Random Access Memory (BRAM) resources is presented. This facilitates the dynamic sharing of

valuable and scarce on-chip memory among several processing elements (PEs), according to their

dynamic run- time memory requirements. The proposed scalable BRAM memory management

architecture adaptively manages these dynamic memory requirements and balances the buffer memory

over several PEs to reduce the total memory required, compared to the worst-case memory

footprint for all PEs. The runtime adaptive system allocates BRAM to each PE sufficiently fast

enough as required and utilized. The proposed system suited for the dynamic memory footprints

of FPGA-based reconfigurable architectures.

Keywords: Block Random Access Memory (BRAM), Dynamic On-chip Memory

Management Unit (DOMMU), Dynamic Partial Reconfiguration (DPR), Processing Elements

(PEs).

I. INTRODUCTION

With the increasing complexity and performance requirements of real-time embedded systems and the

advances in FPGA technology, came the advent of multi-processor architectures and, more recently, of

reconfigurable computing. Reconfigurable computing exploits the reconfiguration capabilities of FPGA

devices to reconfigure the resources on the FPGA to modify and adapt the functionality of these

resources to a specific application or computation that needs to be performed. More recently, dynamic

partial reconfiguration (DPR) of FPGAs provided the possibility to specify and constrain certain partitions

on an FPGA such that they can execute different tasks at different points in time without

consuming additional area.

One main challenge of dynamic reconfigurable computing is the efficient assignment of resources to

different partitions, such as the scarce and valuable block random access memory (BRAM), which is

often a limiting factor in the design of complex embedded systems. Modules designed to occupy

the same physical partition on FPGA can only utilize the on-chip BRAM resources within this

partition, which are often not sufficient for memory-intense applications. However, th is imposes

300 | P a g e

many physical design constraints on the FPGA-based implementation, and reduces its potential for

flexibility and reconfigurability. Moreover, local on-chip memory is almost always the preferred

memory choice for real-time applications, since it is the lowest latency (one clock cycle), fastest,

and highest bandwidth memory solution available. Hence, it becomes necessary to design the system

using maximum worst - case memory footprint estimates, but such static memory allocation is

inefficient and would impose excessive area and power consumption overheads. Dynamic memory

management is needed to enhance the gains of reconfigurable computing by meeting the dynamic

context dependent memory requirements of embedded reconfigurable applications and to avoid costly

static memory allocations at design-time.

In this proposed paper, a Dynamic On-chip Memory Management Unit (DOMMU) which is

customized to target the run-time dynamic management of on-chip BRAM to parallel FPGA-based PEs,

according to their dynamic runtime memory footprints. DOMMU is designed with flexible user -

configurability and scalability. It supports automated BRAM (de)allocation, which ensures that memory

management remains transparent to the PEs. Support for sharing BRAM between PEs is also integrated,

and can be extended to support additional BRAM configuration types.

II. DESIGN GOALS AND FUNCTIONALITY OF DOMMU

For DOMMU to dynamically manage on-chip memory allocation of PEs in reconfigurable computing,

it has to meet the following requirements:

2.1 Dynamic Memory (De) Allocation

Static memory allocation architectures often force PEs to reserve enough BRAM to cover worst-case

requirements and to resort to off-chip memory for more. In typical cases, significantly less than

worst- case memory is required, and the worst-case buffer can be provided for other PEs while

unused. This dynamic sharing and allocation of memory can reduce the total memory required at

run-time and improve BRAM utilization. However, dynamic allocation should be guaranteed to occur

faster than the first access of the PE to this BRAM to ensure that memory requirements are served

with quality.

2.2Transparency

An important design goal is to decouple the internal functionality of DOMMU from the PEs using it.

Therefore, DOMMU's interface as well as its behavior and timing performance has to be identical to

that of traditional BRAM access. This is achieved by BRAM virtual address mapping which is

transparent to the PEs, and maintaining a single clock cycle latency for BRAM access. Moreover, it

is necessary to provide all the PEs with access to their allocated BRAM simultaneously via

independent dedicated channels without any bandwidth sharing. To provide a PE transparently with

memory when it is needed, automated dynamic BRAM (de)allocation is realized which should be

enabled or disabled for different

PEs independently at run-time, according to the application requirements.

301 | P a g e

2.3 Scalability

DOMMU has to be designed with user-configured parameters to make it reusable and scalable in terms

of the number of memory ports, number of BRAMs managed, their types and configurations.

Moreover, the required hardware resources have to scale well with increasing numbers of memory

ports and managed BRAMs. Additionally, the design has to provide integrated support for shared BRAM for

communication between PEs through dual-port BRAM access, and should be extensible to integrate

application-specific BRAM type templates.

2.4 Conservation of an optimal point in design space

Since DOMMU replaces static allocation of BRAMs, the design space exploration for the architecture

using DOMMU has to consider bandwidth, latency and hardware resources. Independent dedicated

channels between PEs and their associated BRAMs assure a latency of one clock cycle for memory

accesses. In order not to outweigh the gains of DOMMU, the hardware resources have to be kept

minimal. This preserves the point in the design space of the original architecture, while

enabling efficient utilization of BRAM resources by dynamic management.

III PROPOSED DESIGN

Fig. 1: Illustration of the general system overview of DOMMU

In Fig. 1, each PE is assigned one or more memory ports, by the user at design-time. These memory ports

interface with DOMMU for BRAM (de)allocation and access. Memory ports share access to N BRAM

elements via an interconnection network as shown in Fig. 1.

To manage this dynamic sharing while keeping the BRAM management transparent to the PEs, it must

keep track of the BRAM configurations (width and depth) available "in stock", the BRAM assigned to

302 | P a g e

each PE, the configuration details of this BRAM, how often the BRAM is accessed, and how much

more or less BRAM is required by each PE at any point in time. To keep the BRAM

management transparent to the PEs, an address mapping scheme ensures correct PE-BRAM association.

IV. BRAM ORGANIZATION AND ADDRESS TRANSLATION SCHEME

Fig. 2: Logical to physical address translation scheme of DOMMU

The set of BRAM elements shown in Fig. 2 and their physical configurations is the BRAM physical address

space, which is realized by initializing a subset of the available BRAM resources on the device in

different configurations (width X depth) depending on the design requirements.

To provide transparency to the PEs, the BRAM elements are also arranged in a logical address

space, in the form of logical pages. Concepts of logical addressing and paging are borrowed from

software memory management of operating systems, and employed similarly in the design of

DOMMU. Each memory port is assigned a logical page which can be assigned up to X BRAM

elements as shown in Figure 2. The BRAM elements are assigned a Logical Identification (LID)

according to their order of assignment within the logical page. These LIDs are assigned at run-time

independently of the Physical ID (PIDs) of the BRAM elements managed by DOMMU. Each memory

port should "know" its logical page, its word width and depth. Each PE accesses its allocated BRAM

by communicating the logical addresses via its memory port(s) to the DOMMU. The logical address is

mapped to the physical address (BRAM PID and offset within the BRAM element) to access the

correct data word. DOMMU interfaces with the PEs via the memory ports shown in Fig. 2, which

introduces a degree of freedom to assign more than one memory port for each PE at design-time.

303 | P a g e

V ARCHITECTURE OF DOMMU

Fig. 3: Block diagram of DOMMU architecture

A detailed block diagram of DOMMU and its components is illustrated in Fig. 3.

5.1 Crossbar (XBAR) switch

The PE> BRAM interconnection network required in DOMMU must allow all PEs to be physically

able to access all the configured BRAM elements. Bi-directional communication is required to

support both read and write access, as well as non-blocking switching to ensure that multiple

simultaneous PE > BRAM interconnections can always be established. The crossbar switch satisfies these

requirements.

The original idea was to dynamically reconfigure the FPGA routing resources to implement the

crossbar switch, or implementing the crossbar multiplexers using LUTs and reconfiguring their

configuration contents by bit stream manipulation via internal dynamic partial reconfiguration of the

corresponding FPGA configuration frames, in order to control the multiplexed output. However, for

ease of initial implementation and proof-of-concept, the crossbar is implemented in this work

using regular multiplexers. It is realized using two crossbars: a unidirectional (PE BRAM) crossbar for

writing to BRAM, and a bi-directional (PE > BRAM) crossbar for reading from BRAM.

5.2 Address translator (BRAT)

The PEs communicates with the BRAMs by logical addresses. Hence, each memory port is When a read or

write access request is received through a memory port (orange/dashed path in Fig.

304 | P a g e

3), BRAT maps this memory port to the associated logical page by queuing an array which maps each

port to its corresponding logical page and the allowed access credentials (RD, WR, or RDIWR) of

this memory port to this page. If the address is out-of-bounds or involves illegal access, the

incoming address is rejected, and the PE is flagged for requesting an illegal access. This feature

enforces implicit memory access rights to ensure that each PE can only access its assigned memory.

BRAT also receives incoming control requests from a controller to update its stored arrays for new

(de)allocations. ACKINACK message reporting the status and details of each request is returned to

the controller. Errors such as a full logical page that cannot be allocated more BRAM or an empty page

that cannot be (de)allocated from are handled by returning the corresponding NACK message back to

the controller. In general, all incoming control requests are acknowledged with ACKINACK

response messages communicated to the controller which indicate the details of status of the request.

BRA T also keeps track of the logical page associated with each memory port, and the details of each

logical page, such as its access credentials, word width, allowed maximum and actual depth. All

details about the BRAM elements assigned to each page are also stored to ensure correct PE-BRAM

association, correct logical-to-physical address mapping, and detection of illegal accesses.

5.3 Arbiter- Arbitration using adaptive, dynamic and user configurable priorities was

implemented, since this was most suited for dynamic reconfigurable systems. The scheduling priorities

associated with these PEs are dynamic and can change at run-time. Every memory port is assigned a

priority, which is one of the three levels: low, medium or high, and this priority level is assigned as

static or dynamic either at design-time or run-time. A static priority maintains its default value

throughout operation, unless it gets re-assigned explicitly by the PE. At every clock cycle, all

incoming requests from all memory ports are read and arbitration selects the request to serve. If the

waiting time of a request exceeds a userconfigured threshold and if the priority of that port is

dynamic, then the corresponding priority is upgraded to the next level. The dynamic priority of a

memory port also gets downgraded if its pending request gets served, and its request waiting time

is smaller than a user-configured threshold. Configurable and dynamic priority arbitration is suitable

for real-time embedded systems in which some running applications are more time critical than

others, and scheduling priorities can be adjusted accordingly. Hierarchical arbitration is implemented

in which higher priority is always reserved for all allocation requests followed by a lower priority for

all (de)allocation requests because allocation requests are more critical to the PE. Within every level

of hierarchy, the assigned priorities are examined to schedule the highest priority request to be first

served. Latency overhead due to arbitration is unavoidable yet critical, since it is a significant factor in

the latency incurred in serving memory allocation requests, which is crucial for scheduling memory

requests associated with real-time applications. Arbitration latency has a deterministic maximum which

is a function of the number of PE memory ports configured and the maximum number of BRAM

elements that can be requested at one time by any memory port. This latency should be considered

when scheduling BRAM allocation requests, and is guaranteed, when dynamic automated BRAM

allocation is enabled, to remain below the first access of the PE to the requested BRAM. This

overhead can be reduced by minimizing the arbiter logic and dynamism. Moreover, more

305 | P a g e

aggressive pipelining can be attempted in order to serve multiple BRAM requests at one time,

although in the current architecture design this would result in inconsistencies in shared data arrays.

5.4 Memory Port Manager

Each PE memory port that interfaces with DOMMU consists of a dedicated BRAM access port and

a control port for (de)allocation control requests. The BRAM access port constitutes of two independent

ports. Data can be read from or written to one or both of them simultaneously which enables

access of single-port BRAM as well as dual-port BRAM for double the bandwidth, and supports

inter-PE communication, which is often required in real-time image processing applications. If a PE

requires more BRAM bandwidth, additional memory ports can be configured for it. The control port is

assigned a memory port manager which matches the requested BRAM type, word width, and

number of words to the closest BRAM configuration (width X depth) available. This ensures that

the internal BRAM management and configuration details remain transparent to the PE. Since this

mapping is embedded and time-critical, and has to occur with minimal impact on timing performance

and area overhead, this limits the maximum complexity of the methodology and logic

implemented. There is no optimal resolution to this mapping problem due to the different

optimization factors that can be considered such as speed, power or area utilization. Themethodology

implemented in this work selects the match that minimizes in the number of BRAM elements assigned.

Automated dynamic (de)allocation of BRAM is one of the distinguishing features of DOMMU. This

allows additional BRAM to be requested for allocation automatically when the assigned BRAM for

the memory port is close to running out. This is indicated when the number of BRAM addresses that

get written to, increase beyond a user-configured threshold. If the assigned BRAM remains idle.

Dynamic (de)allocation can be enabled or disabled by each port manager at run-time according to the

application requirements. This feature is based upon several simplifying assumptions that every

incoming read/write access is a valid one, that every incoming write access is associated with a new

BRAM address, and that when the number of idle cycles exceeds a certain threshold, that this BRAM

is not required by the memory port anymore, and should be (de)allocated.

The currently supported control requests a PE can issue via a memory port to its memory

port manager are allocating a new single-port or shared BRAM logical page, (de)allocating a BRAM

logical page, or a requested number of words from a logical page, or assigning a new priority

to the concerned memory port. The parameters required for each request depend on the request code

issued, and each request is acknowledged by a response message which indicates the details of the

granted/denied request.

VI CONCLUSION

In this paper, a Dynamic On-chip Memory Management Unit (DOMMU) is proposed to

support dynamic BRAM sharing among several processing elements in FPGA-based dynamic

reconfigurable architectures, such that the BRAM allocation and utilization adapt to the variable run-

306 | P a g e

time memory footprints of the PEs. A dynamic fine-grain control of BRAM (de)allocation, as opposed

to previous static traditional approaches is introduced, as well as a virtual BRAM addressing

scheme, and an automated dynamic memory (de)allocation algorithm, thus making DOMMU

superior to previous architectures in terms of scalability, flexibility and its usability for

reconfigurable computing in particular.

REFERENCES

[1] M. Majer, J. Teich, A.Ahmadinia, and C. Bobda, "The Erlangen slot machine: A dynamically

reconfigurable FPGA-based computer," The Journal of VLSI Signal Processing Systems for Signal,

Image, and Video Technology, vol. 47, no.I, pp. 15-31,2007.

[2] I. Koutras, A.Bartzas, and D. Soudris, "Adaptive dynamic memory allocators by estimating application

workloads," in 2012 International Conference o n Embedded Computer Systems (SAMOS).

IEEE, 2012, pp.252-259.

[3] D. Goehringer, L. Meder, M. Hubner, and J. Becker, "Adaptive multi•client network-on-chip

memory," in 2011 International Conference on Reconfigurable Computing and FPGAs (ReConFig),

2011, pp. 7-12.

[4] Anagnostopoulos, S. Xydis,A. Bartzas, Z. Lu, D. Soudris, and A. Jantsch, "Custom microcoded

dynamic memory management for distributed on-chip memory organizations," IEEE Embedded

Systems Letters, vol. 3, no. 2, pp. 66-69, 2011.

[5] M. ShalanandY. 1. Mooney, "A dynamic memory management unit for embedded real-time

system- on-a-chip," in International Conference on Compilers, Architecture and Synthesis for

Embedded Systems, 2000, vol. 17, no. 19, 2000, pp. 180-186.

[6] C. H. Hoo and A. Kumar, "An area-efficient partially reconfigurable crossbar switch with low

reconfiguration delay," in 22nd 2012 International Conference on Field Programmable Logic

and Applications (FPL), Aug 2012, pp. 400-406.

