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ABSTRACT 

In this  paper, an  adaptive  architecture  for  dynamic management  and  allocation  of  on-chip  FPGA  

Block Random Access Memory (BRAM) resources is  presented. This facilitates the  dynamic sharing of  

valuable and  scarce  on-chip  memory among  several  processing  elements  (PEs),  according  to  their 

dynamic  run- time  memory  requirements.  The  proposed scalable  BRAM  memory  management  

architecture  adaptively manages  these  dynamic  memory  requirements  and  balances  the buffer  memory  

over  several  PEs  to reduce  the  total  memory required,  compared  to  the  worst-case  memory  

footprint  for  all PEs.   The runtime  adaptive  system  allocates  BRAM  to  each  PE sufficiently  fast  

enough  as  required  and  utilized. The   proposed   system   suited   for the   dynamic   memory   footprints   

of   FPGA-based   reconfigurable architectures. 

 

Keywords: Block  Random Access  Memory  (BRAM), Dynamic  On-chip Memory  

Management Unit  (DOMMU), Dynamic Partial  Reconfiguration (DPR), Processing Elements 
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I. INTRODUCTION 

With  the  increasing  complexity  and  performance  requirements  of  real-time  embedded  systems  and  the 

advances  in FPGA  technology,  came  the  advent  of  multi-processor  architectures  and,  more  recently,  of 

reconfigurable  computing.  Reconfigurable  computing  exploits  the  reconfiguration  capabilities  of FPGA 

devices to reconfigure the resources on the FPGA to  modify and  adapt the  functionality of these 

resources to a specific  application  or  computation  that  needs  to  be  performed.  More  recently,  dynamic  

partial reconfiguration  (DPR)  of FPGAs provided the  possibility  to  specify and constrain certain partitions  

on  an FPGA   such   that   they   can   execute   different tasks   at   different   points   in   time   without   

consuming additional area. 

One  main  challenge  of  dynamic  reconfigurable  computing is  the  efficient  assignment  of  resources  to 

different  partitions, such  as  the  scarce  and  valuable  block  random  access  memory (BRAM),  which  is 

often  a  limiting  factor  in  the  design  of complex  embedded  systems. Modules  designed  to occupy  

the same  physical  partition  on  FPGA  can  only  utilize the  on-chip  BRAM  resources  within  this  

partition, which are  often  not  sufficient  for  memory-intense  applications.  However, th is   imposes  
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many  physical design   constraints on   the   FPGA-based  implementation,  and   reduces   its   potential for   

flexibility  and reconfigurability. Moreover,  local  on-chip memory  is  almost  always  the  preferred  

memory  choice  for real-time  applications,  since  it  is  the  lowest  latency  (one clock  cycle),  fastest,  

and  highest  bandwidth memory  solution available.  Hence,  it  becomes  necessary  to  design  the  system  

using  maximum  worst - case  memory  footprint  estimates, but  such  static  memory  allocation  is  

inefficient and  would impose excessive  area  and  power  consumption  overheads. Dynamic memory 

management is  needed  to  enhance the  gains of  reconfigurable  computing  by  meeting  the  dynamic  

context dependent  memory  requirements of embedded reconfigurable applications and to avoid costly 

static memory allocations at design-time. 

In  this  proposed paper,  a  Dynamic  On-chip Memory Management Unit  (DOMMU)  which  is  

customized to target the  run-time dynamic management of on-chip BRAM to parallel FPGA-based PEs, 

according to their  dynamic  runtime  memory  footprints.  DOMMU  is  designed  with  flexible  user -

configurability  and scalability. It supports automated BRAM (de)allocation, which ensures that memory 

management remains transparent  to  the  PEs.  Support  for  sharing BRAM between  PEs  is  also  integrated, 

and  can  be extended to support additional BRAM configuration types. 

 

II. DESIGN GOALS AND FUNCTIONALITY OF DOMMU 

 

For  DOMMU to  dynamically manage on-chip  memory allocation of  PEs  in  reconfigurable computing, 

it has to  meet the following requirements: 

2.1 Dynamic Memory (De) Allocation 

Static  memory  allocation  architectures  often  force  PEs  to reserve  enough  BRAM  to  cover  worst-case 

requirements  and to  resort  to  off-chip  memory  for  more.  In  typical  cases, significantly  less  than  

worst- case  memory  is  required,  and  the worst-case buffer  can  be  provided  for  other  PEs  while 

unused. This dynamic  sharing  and  allocation  of  memory  can  reduce the  total  memory  required  at   

run-time  and improve  BRAM utilization.  However,  dynamic  allocation  should  be  guaranteed to  occur  

faster  than  the first access of the PE to this BRAM to ensure that memory requirements are served 

with quality. 

2.2Transparency 

An important design goal is to decouple the internal functionality of DOMMU from the PEs using it. 

Therefore, DOMMU's interface  as  well  as  its  behavior and  timing  performance  has to  be  identical  to  

that  of traditional  BRAM  access.  This  is achieved  by  BRAM  virtual  address  mapping  which  is  

transparent  to the  PEs,  and  maintaining a  single  clock  cycle  latency for  BRAM  access.  Moreover,  it  

is  necessary  to provide  all the  PEs  with  access  to  their  allocated  BRAM  simultaneously via  

independent  dedicated channels without any bandwidth sharing. To provide a  PE transparently with  

memory when it  is  needed, automated  dynamic  BRAM  (de)allocation  is realized  which  should  be  

enabled  or  disabled  for  different 

PEs independently at run-time, according to the application requirements. 
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2.3 Scalability 

DOMMU has to be designed with user-configured parameters to  make it reusable and scalable in terms 

of  the  number of  memory ports,  number of  BRAMs  managed, their  types and  configurations. 

Moreover, the  required  hardware  resources have  to   scale  well  with  increasing  numbers  of  memory  

ports and managed BRAMs. Additionally, the design has to provide integrated support for shared BRAM for 

communication between  PEs  through  dual-port  BRAM  access,  and  should be  extensible  to  integrate 

application-specific BRAM type templates. 

 

2.4 Conservation of an optimal point in design space 

Since  DOMMU  replaces  static  allocation  of  BRAMs,  the  design space exploration for the  architecture 

using DOMMU has   to   consider   bandwidth,   latency   and   hardware   resources. Independent   dedicated 

channels  between  PEs  and  their  associated  BRAMs  assure  a  latency  of  one  clock  cycle  for  memory 

accesses.  In  order  not  to  outweigh  the  gains  of  DOMMU,  the hardware  resources  have  to  be  kept 

minimal.  This   preserves the   point   in   the   design  space  of   the   original  architecture,  while 

enabling efficient utilization of BRAM resources by dynamic management. 

 

III PROPOSED  DESIGN 

 

Fig. 1: Illustration of the general system overview of DOMMU 

In Fig. 1, each PE is assigned one or more memory ports, by the user at design-time.  These memory ports 

interface with DOMMU for BRAM (de)allocation and access.   Memory ports share access to N BRAM 

elements via an interconnection network as shown in Fig. 1. 

To manage this  dynamic  sharing  while keeping  the  BRAM management  transparent  to  the  PEs,  it  must 

keep  track  of  the BRAM  configurations  (width  and  depth)  available  "in  stock", the  BRAM  assigned  to 
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each  PE,  the  configuration  details  of this  BRAM,  how  often  the  BRAM  is  accessed,  and  how  much 

more  or  less  BRAM  is  required  by  each  PE  at  any  point in  time.  To  keep  the  BRAM  

management transparent to the PEs, an address mapping scheme ensures correct PE-BRAM association. 

 

IV. BRAM  ORGANIZATION AND ADDRESS  TRANSLATION SCHEME 

 

Fig. 2: Logical to physical address translation scheme of DOMMU 

The set of BRAM elements shown in Fig. 2 and their physical configurations is the BRAM  physical  address 

space, which  is  realized  by  initializing  a  subset  of  the  available BRAM  resources  on  the  device  in 

different configurations (width X depth) depending on the design requirements. 

To  provide  transparency  to  the  PEs,  the  BRAM  elements are  also  arranged  in a  logical  address  

space, in  the  form of  logical  pages.  Concepts  of  logical  addressing  and  paging are  borrowed  from  

software memory  management  of  operating  systems,  and  employed  similarly  in  the  design  of 

DOMMU.  Each memory port  is  assigned  a  logical  page  which can  be  assigned  up  to  X  BRAM  

elements  as  shown  in Figure 2.  The  BRAM  elements  are  assigned  a  Logical  Identification (LID)  

according  to  their  order of assignment  within the  logical page.  These  LIDs  are  assigned  at  run-time  

independently  of the  Physical ID  (PIDs)  of  the  BRAM  elements  managed  by DOMMU.  Each  memory 

port  should  "know"  its  logical page, its   word   width   and   depth.   Each PE accesses its allocated BRAM 

by communicating the logical addresses via its memory port(s) to the DOMMU. The  logical  address  is  

mapped  to  the physical  address (BRAM PID and offset  within the  BRAM element) to  access the  

correct data  word. DOMMU interfaces with  the  PEs  via  the  memory  ports shown  in  Fig.  2,  which  

introduces  a  degree  of  freedom  to assign more than one  memory port for each PE at design-time. 
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V ARCHITECTURE OF DOMMU 

 

Fig. 3: Block diagram of DOMMU architecture 

 

A detailed block diagram of DOMMU and its components is illustrated in Fig. 3. 

 

5.1 Crossbar (XBAR) switch 

The  PE> BRAM  interconnection network  required  in  DOMMU  must  allow  all  PEs  to  be physically 

able  to  access  all  the  configured  BRAM  elements. Bi-directional  communication  is  required  to  

support both  read and  write  access,  as  well  as  non-blocking  switching  to  ensure that  multiple  

simultaneous  PE > BRAM interconnections can always be established. The crossbar switch satisfies these 

requirements. 

The original idea was to dynamically reconfigure the FPGA routing resources to implement the 

crossbar switch, or   implementing  the   crossbar   multiplexers  using   LUTs  and reconfiguring  their   

configuration contents  by  bit stream  manipulation  via  internal  dynamic  partial  reconfiguration  of  the 

corresponding FPGA  configuration  frames,  in  order  to control  the  multiplexed  output.  However,  for  

ease  of  initial implementation   and    proof-of-concept,   the   crossbar   is   implemented   in    this    work    

using regular multiplexers. It  is  realized using two  crossbars: a  unidirectional (PE    BRAM) crossbar for  

writing to BRAM, and a  bi-directional (PE  > BRAM) crossbar for reading from BRAM. 

 

5.2 Address translator (BRAT) 

The PEs communicates with the BRAMs by logical addresses. Hence, each memory port is  When  a  read  or  

write  access request  is  received through  a memory port  (orange/dashed path  in  Fig.   
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3), BRAT  maps this memory port to the associated logical page by queuing an array which maps each  

port to  its  corresponding  logical  page and  the  allowed  access  credentials  (RD,  WR,  or  RDIWR)  of 

this memory  port  to  this  page.  If  the  address  is  out-of-bounds or involves  illegal  access,  the  

incoming address is  rejected, and the  PE  is  flagged  for  requesting an  illegal  access.  This feature 

enforces implicit memory access rights to ensure that each PE can only access its assigned memory. 

BRAT also  receives incoming control  requests  from  a controller  to  update  its  stored  arrays  for  new 

(de)allocations. ACKINACK  message  reporting  the  status  and  details  of  each request  is  returned  to  

the controller.  Errors  such  as a  full logical  page  that  cannot be allocated  more BRAM or  an  empty page  

that cannot  be  (de)allocated  from  are  handled  by  returning the  corresponding  NACK  message  back  to  

the controller. In   general,   all   incoming   control   requests   are   acknowledged with   ACKINACK   

response messages  communicated to  the controller  which  indicate  the  details  of  status  of  the  request. 

BRA T also keeps track  of the  logical  page associated  with each memory  port,  and  the  details  of  each  

logical  page, such  as  its access  credentials,  word  width,  allowed  maximum  and  actual depth.  All  

details  about  the BRAM  elements assigned  to  each page  are also  stored  to  ensure  correct  PE-BRAM  

association, correct logical-to-physical address mapping, and detection of illegal accesses. 

5.3 Arbiter- Arbitration  using  adaptive,  dynamic  and  user configurable  priorities  was  

implemented, since  this  was  most suited  for  dynamic  reconfigurable systems.  The  scheduling priorities  

associated  with these  PEs  are  dynamic and  can change  at  run-time. Every  memory  port  is  assigned a  

priority, which  is one  of  the  three  levels:  low,  medium  or  high,  and this  priority  level  is  assigned  as  

static  or  dynamic either at design-time or run-time. A static priority maintains its  default value 

throughout operation, unless it  gets re-assigned  explicitly by  the  PE.  At  every  clock  cycle,  all  

incoming  requests  from all  memory ports  are  read  and  arbitration  selects  the  request to  serve.  If  the  

waiting  time  of  a  request  exceeds  a userconfigured  threshold  and  if  the  priority  of that  port  is  

dynamic, then  the  corresponding  priority  is upgraded to  the  next  level. The  dynamic priority of  a  

memory port  also  gets  downgraded if  its  pending request   gets   served,   and   its   request   waiting   time 

is   smaller   than   a   user-configured   threshold. Configurable and dynamic  priority  arbitration  is  suitable  

for  real-time  embedded systems  in  which  some running   applications  are   more   time critical   than   

others,   and   scheduling  priorities  can   be   adjusted accordingly. Hierarchical arbitration is  implemented 

in  which higher priority  is  always  reserved  for  all allocation requests followed by a  lower priority for 

all (de)allocation requests because allocation requests are more  critical  to   the  PE.  Within  every  level  

of hierarchy,  the  assigned  priorities  are  examined  to schedule the highest priority request to be first 

served. Latency overhead due to  arbitration is  unavoidable yet critical,  since  it  is a  significant factor  in  

the  latency  incurred  in  serving  memory  allocation requests, which   is   crucial   for   scheduling  memory  

requests associated  with   real-time  applications.  Arbitration latency has a  deterministic maximum which 

is a  function of  the  number of  PE  memory ports configured and  the  maximum  number of  BRAM  

elements  that  can  be  requested  at  one  time  by any  memory port. This  latency  should  be  considered  

when scheduling BRAM allocation requests,  and is guaranteed,  when dynamic  automated  BRAM  

allocation  is  enabled,  to  remain below  the  first  access  of  the  PE  to  the requested   BRAM. This   

overhead   can   be   reduced   by   minimizing   the   arbiter   logic and   dynamism. Moreover,  more  
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aggressive  pipelining  can  be attempted  in  order  to  serve  multiple  BRAM  requests  at one time,  

although  in  the  current  architecture  design  this  would result  in  inconsistencies  in  shared  data arrays. 

 

5.4 Memory Port Manager 

Each  PE  memory  port  that interfaces  with DOMMU consists of a dedicated BRAM access port  and  

a control  port  for  (de)allocation control  requests. The BRAM access port constitutes of two independent 

ports. Data  can  be  read  from  or  written  to  one  or  both  of  them simultaneously  which  enables  

access  of single-port   BRAM as   well   as   dual-port   BRAM   for   double   the   bandwidth,   and supports   

inter-PE communication,  which  is  often  required  in real-time  image  processing  applications.  If a PE 

requires more BRAM bandwidth, additional memory ports can be configured for it. The control port is  

assigned a  memory port  manager which  matches  the  requested  BRAM  type,  word  width,  and 

number  of  words  to  the closest   BRAM   configuration (width X   depth)   available.   This   ensures   that   

the   internal   BRAM management  and  configuration  details  remain  transparent  to the  PE.  Since  this  

mapping  is  embedded and  time-critical, and  has  to  occur  with  minimal  impact  on  timing  performance 

and  area  overhead,  this limits   the   maximum  complexity  of the   methodology  and   logic   

implemented.  There   is   no   optimal resolution  to  this  mapping  problem  due  to  the  different  

optimization  factors  that  can  be  considered such  as  speed,  power or  area  utilization.  Themethodology 

implemented in this work selects the match that minimizes in the number of BRAM elements assigned. 

Automated  dynamic  (de)allocation  of  BRAM  is  one  of  the distinguishing  features  of  DOMMU.  This 

allows  additional BRAM  to  be  requested  for  allocation  automatically  when  the assigned  BRAM  for  

the memory  port  is  close  to  running  out. This  is  indicated  when  the  number  of  BRAM  addresses  that 

get written  to,  increase  beyond  a  user-configured  threshold. If the assigned BRAM remains idle.  

Dynamic (de)allocation can be enabled or disabled by each port manager at run-time according to  the 

application requirements.  This feature  is  based  upon  several  simplifying  assumptions  that every  

incoming  read/write access  is a  valid  one,  that  every incoming  write access is  associated with a new 

BRAM address, and  that when  the  number  of  idle  cycles  exceeds  a  certain threshold,  that  this  BRAM 

is  not  required  by  the memory port anymore, and should be  (de)allocated. 

The  currently  supported  control  requests  a   PE  can  issue via  a   memory  port  to   its   memory  

port manager  are  allocating a  new  single-port  or  shared  BRAM  logical  page,  (de)allocating a  BRAM  

logical page,  or   a   requested  number  of   words  from a   logical  page,  or  assigning  a   new  priority  

to   the concerned memory port.  The parameters required for  each  request  depend on  the  request  code  

issued,  and each  request  is  acknowledged by  a  response  message  which  indicates  the  details  of  the 

granted/denied request. 

 

VI  CONCLUSION 

In   this   paper,   a   Dynamic   On-chip   Memory  Management Unit   (DOMMU)  is   proposed   to   

support dynamic   BRAM sharing   among   several   processing  elements   in   FPGA-based dynamic   

reconfigurable architectures,  such  that  the  BRAM allocation  and  utilization  adapt  to  the  variable  run-



 
 

306 | P a g e  

 

time  memory footprints  of  the  PEs.  A  dynamic  fine-grain  control  of BRAM (de)allocation,  as  opposed  

to  previous static  traditional approaches  is   introduced,  as   well  as a   virtual  BRAM  addressing  

scheme,  and   an automated   dynamic memory   (de)allocation algorithm,   thus   making   DOMMU   

superior   to   previous architectures   in   terms   of   scalability,   flexibility   and   its   usability   for 

reconfigurable   computing   in particular. 
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