International Journal of Advanced Technology in Engineering and Science -Vol. No.5, Issue No. 02, February 2017

www.ijates.com

A STUDY ON FACTORS AFFECTING QUALITY OF IT EDUCATION INFRASTRUCTURE IN INDIA

Dr. Virender Khanna

Head of Department, School of Business and Entrepreneurship, FDDI, Noida

ABSTRACT

This study aims to reveal the factors effecting the quality of it education infrastructure in India. The latest Annual Status of Education Report shows that learning outcomes are abysmal in Indian schools. There is a lot of work needed in infrastructure when the government announces a new education policy which is in the works. Different statistical methods were used to achieve the objectives of the study.

This study seeks to study and assess the factors that have an impact on the quality of the IT education infrastructure prevailing in India. This study also throws light on the importance of the quality of the aforesaid infrastructure in view of the rising-education globally to keep in pace with the developments.

Keywords: IT Education, infrastructure, Education, e-education

I. INTRODUCTION

India holds an imperative place in the worldwide training industry. The nation has more than 1.4 million schools with more than 227 million understudies enlisted and more than 36,000 advanced education establishments. India has one of the biggest advanced education frameworks on the planet. Nonetheless, there is still a ton of potential for further advancement in the training framework.

India has turned into the second biggest market for e-learning after the US. The part is as of now pegged at US\$ 2-3 billion, and is required to touch US\$ 40 billion by 2017. The separation training market in India is required to develop at a Compound Annual Growth Rate (CAGR) of around 34 for every cent# amid 2013-14 to 2017-18. In addition, the point of the legislature to raise its present gross enrolment proportion to 30 for every penny by 2020 will likewise help the development of the separation training in India.

II. REVIEW OF LITERATURE

An ever increasing number of learners are requiring adaptability in program structure to suit their different obligations, for example, all day employments or family needs (PSU, 1998). With these limitations, understudies search for courses that best suit their calendars and learning styles, and afterward exchange the credit to the college where they will gain their degrees (Johnstone, Ewell, and Paulson, 2002; Paulson, 2002; Carnevale, 2000c). Johnstone et al. (2002) allude to this idea of securing and trading credit at various establishments than the one they get their degree from as "scholastic money" and note that it is developing—starting at 1999, 77% of all understudies graduating with a baccalaureate degree had "went to" at least two organizations.

One aftereffect of the profoundly focused e-learning business sector will be foundations that spend significant time in meeting specific specialties in the market (Gallagher, 2003). Morrison and Barone (2003, p. 4) watched, "We can see the beginnings of the pattern toward the unbundling of courses, credits, administrations, and charge structures." Dunn anticipated a comparable pattern, foreseeing that "courseware makers will offer courses and honor attributes specifically to the end client and along these lines, through intermediation, sidestep the institutional agent" (Dunn, 2000, p. 37).

The cutting edge, customary age understudies are not at all like past eras. They are "keen on [qualifications from] little modules and short projects ... and in discovering that should be possible at home and fitted around work, family, and social commitments" (Bates, 2000, p. 5). Data age learners favor doing to knowing, experimentation to rationale, and writing to penmanship. Multitasking is a lifestyle for them, remaining associated is basic, and there is zero resistance for postponements. Further, present day proficiency incorporates message as well as picture and screen education—it includes exploring data and gathering learning from pieces (Oblinger et al., 2001; Jones and Pritchard, 2000).

III. OBJECTIVE OF STUDY

International Journal of Advanced Technology in Engineering and Science -

Vol. No.5, Issue No. 02, February 2017

www.ijates.com

ijates ISSN 2348 - 7550

The Objective of the Study is to study the factors effecting the quality of it education infrastructure in India

RESEARCH DESIGN

The research design for present study is **descriptive** in nature. As it is impossible to examine the whole universe, the responses are sought from the business enterprises located in NCR.

RESEARCH TOOLS & TECHNIQUES

The five point Likert scale is used to measure the attitudes of business executives towards the selected variables. The respondents were asked to rate the variables using five point Likert scale which ranges from strongly agree to strongly disagree. The collected data is analysed & interpreted with the help of various statistical tools and techniques such as tabulation, diagrammatic representation, descriptive analysis which are suitable for this study. **DATA ANALYSIS AND INTERPRETATION**

[1.] Reliability analysis

Table 1: Reliability statisticsReliability Statistics									
Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items							
.822	.823	15							

In order to check the reliability of the questionnaire, the Cronbach's Alpha test was applied for the study. The value of Cronbach's alpha is found to be more than 0.823 in all the dimensions. As the value of Cronbach's Alpha is more than 0.7, the instrument is reliable for the study.

[2.] Normality Test

In order to check the normality of data, Shapiro-Wilk test was used.

 Table 2: Shapiro-Wilk test of Normality of data

 Tests of Normality

		1 6515 01	normanty			
	Kolm	ogorov-Smi	rnov ^a	S	Shapiro-Wilk	i.
	Statistic	df	Sig.	Statistic	df	Sig.
Tech_complabs	.236	206	.000	.864	206	.000
Tech_interclssrm	.163	206	.000	.892	206	.000
Tech_Intgrtcomp	.205	206	.000	.871	206	.000
Tech_Multcontent	.167	206	.000	.902	206	.000
Tech_trngtchr	.198	206	.000	.879	206	.000
Tech_systmcndtn	.154	206	.000	.899	206	.000
ILE_lrngkits	.159	206	.000	.888	206	.000
ILE_useoftech	.152	206	.000	.901	206	.000
CB_abl	.146	206	.000	.899	206	.000
CB_clssrmmgmt	.177	206	.000	.900	206	.000
CB_mntreval	.182	206	.000	.855	206	.000
Tech	.175	206	.000	.879	206	.000
ILE	.238	206	.000	.846	206	.000
СВ	.154	206	.000	.908	206	.000
Ouality of ITedu	.148	206	.000	.901	206	.000

a. Lilliefors Significance Correction

Since p<.05 in all the cases, thus it indicates that the data is normal and further statistical tests can be used.

International Journal of Advanced Technology in Engineering and Science Vol. No.5, Issue No. 02, February 2017

www.ijates.com

nates ISSN 2348 - 7550

Table 3: KMO and Barlett's test of sphericity for working women **KMO and Bartlett's Test**

Kaiser-Meyer-Olkin Measur	e of Sampling Adequacy.	.727
Bartlett's Test of Sphericity	1.208E3	
	df	105
	Sig.	.000

From the test, it is found that the value for Kaiser-Meyer-Olkin Measure of Sampling Adequacy was more than 0.6 in all the parts of questionnaires. Also Bartlett's Test of Sphericity has significant value less than 0.05 at 5 % level of significance in all the parts of questionnaire. Thus the validity of the questionnaire is established.

Coefficient of correlation

Karl Pearson coefficient of correlation was calculated to find out the level of relationship between the variables.

Table 4: Correlation matrix	K
Inter-Item Correlation Matrix	K

	Tech_c ompla bs	Tech_i ntercls srm	Tech_ Intgrtc omp	Tech_ Multco ntent	Tech_t rngtch r	Tech_ systmc ndtn	ILE_lr ngkits	ILE_ useof tech	CB_a bl	CB_cl ssrmm gmt	CB_m ntreval	Tech	ILE	СВ	Quality _of_ITe du
Tech_complabs	1.000	.579	.523	.281	.174	.247	.127	.199	.180	.091	.061	.151	075	.150	.214
Tech_interclssrm	.579	1.000	.623	.339	.349	.428	.131	.320	.297	.049	.136	.155	.033	.151	.167
Tech_Intgrtcomp	.523	.623	1.000	.330	.249	.374	.163	.363	.406	.119	.101	.104	083	.116	.138
Tech_Multcontent	.281	.339	.330	1.000	.296	.481	.231	.104	.036	.061	.097	.081	.177	.132	.139
Tech_trngtchr	.174	.349	.249	.296	1.000	.513	.179	.097	.176	.233	.163	.358	.090	.236	.282
Tech_systmcndtn	.247	.428	.374	.481	.513	1.000	.467	.433	.398	.092	.141	.226	.050	.130	.155
ILE_lrngkits	.127	.131	.163	.231	.179	.467	1.000	.595	.320	.173	.144	.329	.178	.223	.232
ILE_useoftech	.199	.320	.363	.104	.097	.433	.595	1.00 0	.700	.263	.229	.295	.128	.223	.285
CB_abl	.180	.297	.406	.036	.176	.398	.320	.700	1.000	.337	.130	.255	.005	.104	.258
CB_clssrmmgmt	.091	.049	.119	.061	.233	.092	.173	.263	.337	1.000	.371	.535	.079	.149	.196
CB_mntreval	.061	.136	.101	.097	.163	.141	.144	.229	.130	.371	1.000	.455	.035	.113	.225
Tech	.151	.155	.104	.081	.358	.226	.329	.295	.255	.535	.455	1.000	.359	.416	.471
ILE	075	.033	083	.177	.090	.050	.178	.128	.005	.079	.035	.359	1.000	.413	.299
СВ	.150	.151	.116	.132	.236	.130	.223	.223	.104	.149	.113	.416	.413	1.000	.652
Quality_of_ITedu	.214	.167	.138	.139	.282	.155	.232	.285	.258	.196	.225	.471	.299	.652	1.000

From Table 4, it is quite evident that there is a high level of correlation among the variables of the study. However, there are some variables that have no relationship at all.

Hypothesis Testing [4.]

Hypothesis 1:

H01: There is no significant impact of computer labs, interactive classrooms, integrated computers, multimedia content, training of teachers and conditions of systems on technological requirements for quality of IT education infrastructure in Delhi/NCR.

HA1: There is significant impact of computer labs, interactive classrooms, integrated computers, multimedia content, training of teachers and conditions of systems on technological requirements for quality of IT education infrastructure in Delhi/NCR.

Table 5: Relationship between computer labs, interactive classrooms, integrated computers, multimedia content, training of teachers and conditions of systems on technological requirements for quality of IT education infrastructure in Delhi/NCR

International Journal of Advanced Technology in Engineering and Science Vol. No.5, Issue No. 02, February 2017 www.ijates.com

	Coefficients ^a													
		Unstand Coeffi	lardized cients	Standardized Coefficients			95% Confidence Interval for B							
Mode	el	В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound						
1	(Constant)	1.868	.359		5.207	.000	1.160	2.575						
	Tech_complabs	.145	.097	.126	1.502	.135	046	.336						
	Tech_interclssr m	024	.109	021	222	.825	239	.190						
	Tech_Intgrtcom p	044	.099	039	443	.658	239	.151						
	Tech_Multconte nt	080	.084	073	954	.341	245	.085						
	Tech_trngtchr	.330	.077	.332	4.282	.000	.178	.482						
	Tech_systmcndt n	.088	.090	.084	.971	.333	090	.265						

a. Dependent Variable: Tech

Since 'p' value is less than 0.05 for training of teachers variable that means it is significant at 5% level of significance and it is clear that the factor affects the technological requirements for quality of IT education infrastructure in Delhi/NCR. So the null hypothesis is rejected and alternative hypothesis is partially accepted i.e. there is significant impact of training of teachers on technological requirements for quality of IT education infrastructure in Delhi/NCR.

Table 6: Regression analysis- computer labs, interactive classrooms, integrated computers, multimedia content, training of teachers and conditions of systems on technological requirements for quality of IT education infrastructure in Delhi/NCR

Model Summary^b

_						Cha	nge Statist	ics	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.379 ^a	.444	.418	1.325	.144	5.575	6	199	.000

a. Predictors: (Constant), Tech_systmendtn, Tech_complabs, Tech_Multcontent, Tech_trngtchr, Tech_Intgrtcomp, Tech_interclssrm

b. Dependent Variable: Tech

Since the Adjusted R square is found to be 0.418 which indicates that 41.8% of the impact on health status is explained by computer labs, interactive classrooms, integrated computers, multimedia content, training of teachers and conditions of systems on technological requirements for quality of IT education infrastructure in Delhi/NCR. The significant value is found to be 0.000 which is below than 0.05, thus it is significant at 5% level of significance. Thus, null hypothesis is rejected and alternative hypothesis is partially accepted. So, there is significant impact computer labs, interactive classrooms, integrated computers, multimedia content, training of teachers and conditions of systems on technological requirements for quality of IT education infrastructure in Delhi/NCR.

Hypothesis 2:

H02: There is no significant impact of learning kits, use of technology on interactive learning environment for quality of IT education infrastructure in Delhi/NCR.

HA2: There is significant impact of learning kits, use of technology on interactive learning environment for quality of IT education infrastructure in Delhi/NCR.

 Table 7: Relationship of learning kits, use of technology on interactive learning environment for quality of IT education infrastructure in Delhi/NCR

Coefficients^a

International Journal of Advanced Technology in Engineering and Science Vol. No.5, Issue No. 02, February 2017 ijates ISSN 2348 - 7550

www.ijates.com

		Unstandardized Coefficients		Standardized Coefficients			95% Confiden H	ce Interval for 3
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	1.907	.274		6.953	.000	1.366	2.448
	ILE_lrngkits	.160	.087	.158	1.834	.004	012	.332
	ILE_useoftech	.037	.094	.034	.395	.693	149	.224

a. Dependent Variable: ILE

Since 'p' value is less than 0.05 for only some variables, that means it is significant at 5% level of significance Table 8: Regression analysis- learning kits, use of technology on interactive learning environment for quality of IT education infrastructure in Delhi/NCR

Model Summary^b

-						Cha	nge Statist	ics	
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.180 ^a	.432	.423	1.383	.032	3.395	2	203	.035

a. Predictors: (Constant), ILE_useoftech, ILE_lrngkits

b. Dependent Variable: ILE

Since the Adjusted R square is found to be 0.423 which indicates that 42.3% of the impact of learning kits, use of technology on interactive learning environment for quality of IT education infrastructure in Delhi/NCR. The significant value is found to be 0.000 which is below than 0.05, thus it is significant at 5% level of significance. Thus, null hypothesis is rejected and alternative hypothesis is accepted. So, there is significant impact of age on health status of non-working women in Delhi/NCR.

Hypothesis 3:

H03: There is no significant impact of activity based learning, classroom management and monitoring and evaluation on capacity building for quality of IT education infrastructure in Delhi/NCR.

HA3: There is significant impact of activity based learning, classroom management and monitoring and evaluation on capacity building for quality of IT education infrastructure in Delhi/NCR.

Table 9: Relationship between activity based learning, classroom management and monitoring and evaluation on capacity building for quality of IT education infrastructure in Delhi/NCR **Coefficients**^a

Unstandardized Coefficients			Standardized Coefficients			95% Confiden	ice Interval for 3	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	2.333	.306		7.617	.000	1.729	2.936
	CB_abl	.059	.071	.061	.826	.410	082	.200
	CB_clssrmmgmt	.106	.080	.103	1.313	.191	053	.264
	CB_mntreval	.056	.063	.067	.894	.372	068	.180

a. Dependent Variable: CB

Since 'p' value is less than 0.05 only for some cases, that means it is only significant at 5% level of significance for some variables. It can be said that the marital status affects only some variables of health status of working women in Delhi/NCR.

Table 10: Regression analysis- activity based learning, classroom management and monitoring and evaluation on capacity building for quality of IT education infrastructure in Delhi/NCR

Model Summary^b

International Journal of Advanced Technology in Engineering and Science Vol. No.5, Issue No. 02, February 2017 iiates

www.ijates.com

							Change S	Statistics	
Mode l	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.171 ^a	.029	.015	1.272	.029	2.028	3	202	.111

a. Predictors: (Constant), CB_mntreval, CB_abl,

CB_clssrmmgmt

b. Dependent Variable: CB

Since the Adjusted R square is found to be 0.015 which indicates that 0.15% of the impact on activity based learning, classroom management and monitoring and evaluation on capacity building for quality of IT education infrastructure in Delhi/NCR. The significant value is found to be .111 which is greater than 0.05, thus it is not significant at 5% level of significance. Thus, null hypothesis is accepted and alternative hypothesis is rejected. So, there no significant impact of activity based learning, classroom management and monitoring and evaluation on capacity building for quality of IT education infrastructure in Delhi/NCR.

Hypothesis 4:

H04: There is no significant impact of technology based variables on quality of IT education infrastructure in Delhi/NCR.

HA4: There is significant impact of technology based variables on quality of IT education infrastructure in Delhi/NCR.

Table 11: Relationship between impacts of technology based variables on quality of IT education infrastructure in Delhi/NCR Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confiden H	ice Interval for 3
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	1.472	.204		7.213	.000	1.069	1.874
	Tech	.445	.058	.471	7.634	.000	.330	.559

a. Dependent Variable: Quality_of_ITedu

Since 'p' value is less than 0.05 only for some cases, that means it is only significant at 5% level of significance for some variables. It can be said that is significant impact of technology based variables on quality of IT education infrastructure in Delhi/NCR.

Table 12: Regression analysis- impacts of technology based variables on quality of IT education infrastructure in Delhi/NCR

Model Summary^b

-					Change Statistics					
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	
1	.471 ^a	.222	.218	1.176	.222	58.283	1	204	.000	

a. Predictors: (Constant), Tech

b. Dependent Variable: Quality_of_ITedu

Since the Adjusted R square is found to be 0.218 which indicates that 21.8% of the impact of technology based variables on quality of IT education infrastructure in Delhi/NCR.

The significant value is found to be 0.000 which is below than 0.05, thus it is significant at 5% level of significance. Thus, null hypothesis is rejected and alternative hypothesis is accepted. So, there is significant impact of technology based variables on quality of IT education infrastructure in Delhi/NCR.

Hypothesis 5:

H05: There is no significant impact of interactive learning environment on quality of IT education infrastructure in Delhi/NCR.

HA5: There is significant impact of interactive learning environment on quality of IT education infrastructure in Delhi/NCR.

ISSN 2348 - 7550

International Journal of Advanced Technology in Engineering and Science Vol. No.5, Issue No. 02, February 2017 ijat

www.ijates.com

Table 13: Relationship between interactive learning environments on quality of IT education infrastructure in Delhi/NCR

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc	e Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	2.193	.181		12.129	.000	1.837	2.550
	ILE	.284	.064	.299	4.474	.000	.159	.409

a. Dependent Variable: Quality_of_ITedu

Since 'p' value is less than 0.05 only for some cases, that means it is only significant at 5% level of significance for some variables. It can be said that the monthly income affects only some variables of health status of working women in Delhi/NCR.

Table 14: Regression analysis- interactive learning environments on quality of IT education infrastructure in Delhi/NCR

Model Summary^b

_					Change Statistics					
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	
1	.299 ^a	.089	.085	1.273	.089	20.020	1	204	.000	

a. Predictors: (Constant), ILE

b. Dependent Variable: Quality_of_ITedu

Since the Adjusted R square is found to be 0.774 which indicates that 77.4% of the impact on health status is explained by monthly income in working women in Delhi/NCR. The significant value is found to be 0.000 which is below than 0.05, thus it is significant at 5% level of significance. Thus, null hypothesis is rejected and alternative hypothesis is accepted. So, there is significant impact of monthly income on health status of working women in Delhi/NCR.

Hypothesis 6:

H06: There is no significant impact of capacity building on quality of IT education infrastructure in Delhi/NCR. **HA6:** There is significant impact of capacity building on quality of IT education infrastructure in Delhi/NCR.

Table 15: Relationship between capacity building on quality of IT education infrastructure in Delhi/NCR. Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			95% Confidenc	e Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	.837	.182		4.602	.000	.478	1.196
	СВ	.677	.055	.652	12.287	.000	.568	.786

a. Dependent Variable: Quality_of_ITedu

Since 'p' value is less than 0.05 only for some cases, that means it is only significant at 5% level of significance for some variables. It can be said that the number of members in the family affect only some variables of health status of working women in Delhi/NCR.

Table 16: Regression analysis- capacity building on quality of IT education infrastructure in Delhi/NCR Model Summary^b

	Model	R	R Square	Adjusted R	Std. Error of	Change Statistics
--	-------	---	----------	------------	---------------	-------------------

International Journal of Advanced Technology in Engineering and Science Vol. No.5, Issue No. 02, February 2017 ijates

www.ijates.com

			Square	the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.652 ^a	.425	.422	1.011	.425	150.967	1	204	.000

a. Predictors: (Constant), CB

b. Dependent Variable: Quality_of_ITedu

Since the Adjusted R square is found to be 0.889 which indicates that 88.9% of the impact on health status is explained by number of members in the family in working women in Delhi/NCR. The significant value is found to be 0.000 which is below than 0.05, thus it is significant at 5% level of significance. Thus, null hypothesis is rejected and alternative hypothesis is accepted. So, there is significant impact of number of members in the family on health status of working women in Delhi/NCR.

IV. FINDINGS

From the above analysis, it is clear that all the variables that have been considered for the study, i.e. computer labs, interactive classrooms, integrated computers, multimedia content, training of teachers, condition of systems, learning kits, use of technology, activity based learning, classroom management and monitoring and evaluation have an effect on the quality of IT education infrastructure. A positive relationship is found in every strata of analysis between the quality of IT education infrastructure and other factors in the field.

This study throws light on the fact that all of the considered factors are important to develop a digitally conducive environment in order to support quality of IT education.

V. RECOMMENDATIONS & SUGGESTIONS

According to the results of the study, the following are the recommendations and suggestions:

8.1 The technological base for learning should be strong and technically sound to provide a quality platform to students.

8.2 There should be an interactive environment in the classrooms.

8.3 There should be proper use of latest technology

8.4 Proper learning kits should be provided

8.5 There should be proper monitoring and evaluation done regularly to check the level of quality of education imparted.

REFERENCES

- [1.] Allred, E. (2003, June). Is quitting good? Unpublished manuscript, Brigham Young University.
- [2.] Anderson, T. (2001, November/December) The hidden curriculum in distance education: An updated view. Change. 33(6): 28-35.
- [3.] Anderson, T. (2002, May) An updated and theoretical rationale for interaction. Athabasca University: IT Forum Paper #63.
- [4.] Aslanian, C B. (2001). Adult Students Today. The College Board: New York. Bates, T. (2000) Distance education in dual mode higher education institutions: Challenges and changes. Online: http://bates.cstudies.ubc.ca/papers/challengesandchanges.html
- [5.] Bates, T. (2003) Higher education and elearning: Integration or change? Presentation, University of British Columbia. Online: <u>http://bates.cstudies.ubc.ca/</u>
- [6.] Beaudoin, M. F. (2003). Distance Education leadership for the new century. Online Journal of Distance Learning Administration (6)2. Retrieved June, 2003:
- [7.] http://www.westga.edu/%7Edistance/ojdla/summer62/beaudoin62.html .
- [8.] Bishop, J.S., Spake, D.F. (2003) Distance education: A bibliographic review for educational planners and policymakers 1992-2002.
- [9.] Bolam, H., & Dodgson, R. (2003). Retaining and supporting mature students in higher education. Journal of Adult and Continuing Education. 8(2): 179-194.
- [10.] Hawkins, B. (2003) Distributed learning: Promises and pitfalls. 2003 UCEA 88th Annual Conference: March 28-30, 2003—Chicago, Illinois.
- [11.] Hickman, C. J. (2003, March 29). Results of survey regarding distance education offerings. University Continuing Education Association (UCEA) Distance Learning Community of Practice, Research committee report.

ISSN 2348 - 7550

International Journal of Advanced Technology in Engineering and Science Vol. No.5, Issue No. 02, February 2017 ijates

www.ijates.com

- [12.] Johnstone, S.M., Ewell, P., & Paulson, K. (2002) Student learning as academic currency. ACE Center for Policy Analysis. Retrieved June, 2003: <u>http://www.acenet.edu/bookstore/pdf/distributed-learning/distributed-learning-04.pdf</u>
- [13.] Jones, D. R., & Pritchard, A. L. (2000, November/December). The distance education debate: An Australian view. Change. 32-33. Jones, R. (2003). A recommendation for managing the predicted growth in college enrollment at a time of adverse economic conditions. Online Journal of Distance Learning Administration (6)1. Retrieved June, 2003: http://www.westga.edu/%7Edistance/ojdla/spring61/jones61.htm.
- [14.] Kariya, S. (2003) Online education expands and evolves. IEEE Spectrum. 40(5): 49-51.
- [15.] Kinley, E.R. (2001) Implementing distance education, the impact of institutional characteristics: A view from the department chair's chair. A Dissertation at the University of Nebraska-Lincoln. Lifelong Learning Trends: A Profile of Continuing Higher Education. 7th Edition. (2002, April) University Continuing Education Association.

ISSN 2348 - 7550