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ABSTRACT  

In this paper, the concept of compatibility of type (A) in probabilistic 2 -metric space has been 

applied to prove a common fixed point theorem for four mappings.  Our result generalizes and 

extends the result of Singh and Chauhan [9] .  
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1. Introduction. 

 The concept of probabilistic metric space was initially investigated by Menger [6] as a new way to 

represent vagueness in everyday life. Subsequently, it was developed extensively by many authors and used in 

various fields.  To use this concept in Topology and Analysis, several researchers have defined probabilistic 

metric (PM) space in various ways.  

In this paper, we deal with the PM space defined by Schweizer and Sklar [8] and modified by Mishra 

[7], Singh and Jain [10]. Jungck [3,4] gave the more generalized concept compatibility than commutativity and 

weak commutativity in metric space and proved common fixed point theorems.  Jungck et. al. [5] proposed the 

concept of compatible maps of type (A) in Menger space and gave some fixed point theorems. Recently, using 

the concept of compatible mappings of type (A), Jain et. al. [1, 2] proved some interesting fixed point theorems 

in Menger space.   

In this paper a fixed point theorem for four self maps has been proved using the concept of compatible 

maps of type (A) which generalizes and extends the resul t of Singh and Chauhan [9].   

2.  Preliminaries. 

 Throughout this paper, we use symbols and basic definitions of Jain and Singh [1]. 

Definition 2.1. [7] A mapping F : R  R+ is called a distribution if it is non-decreasing left continuous with  

 inf { F (t) | t  R } = 0    and    sup { F (t) | t  R} = 1. 

 We shall denote by L the set of all distribution functions while H will always denote the specific 

distribution function defined by  
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Definition 2.2. [11] A probabilistic 2-metric space (2-PM space) is an ordered pair  

(X, F) where  X is an abstract set and F is a function defined on X × X × X into L, the collection of all 

distribution functions.  The value of F at (x, y, z)   X × X × X  is generally represented by Fx,y,z or F(x, y, z).  

The distribution function F(x, y, z) satisfy the following conditions : 

(1)  F(x, y, z; 0) = 0, 

(2) For all distinct x, y in X there exists a point z in X such that 

 F(x, y, w; t) < 1 for some t > 0. 

(3)  F(x, y, z; t) = 1 for all t > 0 if and only if at least two of the three points are equal. 

(4)  F(x, y, z; t)  =  F(x, z, y ; t) = F(y, z, x; t) (Symmetry) 

(5)  If F(x, y, z; t1) =  F(x, z, y; t2) = F(z, y, x; t3) = 1 then   

 F(x, y, z, ; t1 + t2 + t3) = 1. 

Definition 2.3. [11] The mapping t : [0, 1] × [0, 1] × [0, 1]  [0, 1] is a t-norm if t satisfies the following 

conditions : 

(1)  t(x, 1, 1) = x ,       t(0, 0, 0) = 0 ; 

(2)  t(x, y, z) = t(x, z, y) = T(z, y, x) ; 

(3)  t(x1, y1, z1)   t(x2, y2, z2)  for  x1   x2,  y1 y2,  z1  z2 ; 

(4)  t(t(x, y, z),  p, q)  = t(x, t(y, z, p), q) = t(x, y, t(z, p, q)). 

Definition 2.4. [11]  A Menger probabilistic 2-metric space is a triplet (X, F, t) where  

(X, F) is a 2-PM space and t is a t-norm satisfying the following triangle inequality : 

 F(x, y, z; t1 + t2 + t3)   y(F(x, y, p; t1), F(x, p, z; t2), F(p, y, z; t3) 

for all x, y, z, p  X and t1, t2, t3   0. 

Definition 2.5. [11] A sequence {xn} in a 2-Menger space (X, F, t) is said to converge  to a point x X if for 

each  > 0 and  > 0 there exists a positive integer M(,) such that  

 F(xn, x, a; )  > 1 -  ,     for all a  X and n  M(, ).  

The sequence {xn} converges to x   if and only if  

    F(xn, x, a; t) = H(t)    for all a,  

where H is the distribution function defined as above.  

Definition 2.6. [11] A sequence {xn} in a 2-Menger space (X, F, t) is said to be Cauchy if, for each  > 0 and  

 > 0 there exists a positive integer M(, ) such that  

F(xn, xm, a; ) > 1 - , for all a  X and n, m   M(, ). 

Lemma 2.1. [11] Let {xn} be a sequence in a 2-Menger space  (X, F, t) where t is continuous and  satisfies t(x, 

x, x)  x  for all x   (0, 1). If there exists a positive number h < 1 such that 
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 F(xn+1, xn, a; hu)  F(xn, xn-1, a; u),  n = 1, 2, 3, ...  

for all a   X and u 0 then {xn} is a Cauchy sequence in X.  

Definition 2.7. [10] Self mappings A and S of a Menger probabilistic 2-metric space   

(X, F, t) are said to be compatible if  FASxn, SAxn, a(x)  1 for all a X,  x > 0, whenever {xn} is a sequence 

in X such that Axn, Sxn  u for some u in X, as n . 

Definition 2.7. [1] Self maps S and T of a Menger probabilistic 2-metric space  (X, F, t) are said to be 

compatible of type (A) if FSTxn, TTXn, a (x)  1 and FTSXn, SSxn, a(x)  1 for all x  > 0,  whenever {xn} is a 

sequence in X such that Sxn, Txn  u for some u in X, as n . 

Proposition 2.2. [1] Let S and T be compatible maps type of (A), self maps of a Menger space X, let  

Sxn, Txn u for some u in X. Then 

(a) TSxn  Su if S is continuous. 

(b) STu = TSu and Su = Tu if S and T are continuous. 

Proposition 2.3. [1] If  S and T are compatible self maps of a Menger space (X, F, t) where t is continuous and 

t(x, x)  x for all x [0, 1] and Sxn, Txn  u for some u in X. Then TSxn  u provided S is  continuous.  

Proposition 2.4. [1] If S and T are continuous and compatible self maps of a Menger space (X, F, t) where t is 

continuous and t(x, x)  x for all x  [0, 1]. Then S and T are compatible maps of type (A). 

Proposition 2.5. [1] Let S and T be compatible maps of type (A), self maps of a Menger space (X, F, t), where t 

is continuous and t(x, x) x  for  all  x  [0, 1]. If one of S and T is continuous then S and T are compatible. 

Proposition 2.6. [1] Let S and T be compatible maps of type (A), self maps of Menger space X and Su = Tu for 

some u in X then STu = TSu = SSu = TTu. 

Lemma 2.1. [10] Let  : [0, )  [0, ) be strictly increasing left continuous function such that  (0) = 0,   

t
lim


 (t) = +   and   n

n 0

(t)




  < +, for all t > 0.  

 Define function  : [0, )  [0, ) by    

 (0) = 0     and  (t) = inf{ s > 0 : f(s) > t },  t > 0.    Then 

(i) (t)  <  t for all t  >  0, 

(ii) ((t))   t  and  ((t)) = t  for all  t  0,  

(iii) (t) 1 for all t  0, 

(iv)  
n
lim


 n(t) = +  for all t > 0.     
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Lemma 2.2. [10]  : [0, ) [0, ) is continuous and non-decreasing function, where  is defined as in 

Lemma 2.1. 

Lemma 2.3. [10] Let {yn} be a sequence in a Menger space (X, F, min) and the function  defined as in 

Lemma 2.1  such that for all x > 0 and n N,  

    Fyn, yn+1
(x)  Fy0, y1

( n(x)).   

 Then {yn} is a Cauchy sequence in X.    

3.   MAIN RESULT. 

Theorem 3.1. Let A, B, S and T be self mappings of a complete probabilistic 2-metric space (X, F, *) with 

continuous t-norm * defined by a * b = min{a, b}, a, b  [0, 1], satisfying the following conditions:  

(3.1) A(X)   T(X),  B(X)  S(X); 

(3.2) One of A, B, S and T is continuous; 

(3.3) (A, S) and  (B, T) are pairs of compatible maps of type (A);  

(3.4) FAp,Bq,a((x))  min {FSp,Tq,a(x), FBq,Tq,a(x), FSp,Ap,a(x), FAp,Tq,a(ax), FBq, Sp,a((2 - )x)}, 

 for all p, q  X, x > 0,    (0, 2) where  is defined as in Lemma 2.1. 

 Then A, B, S and T have a unique common fixed point in X. 

Proof. In virtue of condition (3.1), we construct a sequence {yn} in X such that 

    y2n-1 = Ax2n-2 = Tx2n-1 ;    

     y2n  = Bx2n-1 = Sx2n ;      n = 1, 2, 3, ... . 

Using (3.4) and Lemma 2.1, we have 

          Fy2n+1,y2n+2,a(x)     FAx2n, Bx2n+1,a(((x))) 

                     min{FSx2n, Tx2n+1,a((x)), FBx2n+1,Tx2n+1,a((x)),  

     FSx2n, Ax2n,a((x)), FAx2n, Tx2n+1,a((x)), 

     FBx2n+1, Sx2n,a((2 - )(x))}. 

Let   (0,1) and put  = 1 - , we get 

 Fy2n+1, y2n+2,a(x)     min{Fy2n, y2n+1,a((x)),Fy2n+2, y2n+1,a((x)), 

     Fy2n, y2n+1,a((x)), Fy2n+1, y2n+1,a((1- )(x)), 

     Fy2n+2, y2n,a ((1+ )(x))} 

                        min{Fy2n,  y2n+1,a((x)), Fy2n+1,  y2n+2,a((x)), 

     min{Fy2n,  y2n+1,a((x)), Fy2n+1,  y2n+2,a((x))}. 

Making  1,we get 
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 Fy2n+1,  y2n+2, a(x)      min{Fy2n,  y2n+1,a((x)), Fy2n+1, y2n+2,a((x))}. 

Similarly, 

 Fy2n+2, y2n+3, a(x)      min{Fy2n+1, y2n+2,a((x)), Fy2n+2, y2n+3,a((x))}. 

In general, 

               Fyn, yn+1,a(x)         min{Fyn-1,  yn,a((x)), Fyn, yn+1,a((x))} 

        min{Fyn-1, yn,a((x)), Fyn, yn+1,a(2(x))} 

         ...  ...    ... 

         min {Fyn-1, yn,a((x)), Fyn, yn+1,a(r(x))}. 

By Lemma 2.1,  

  2(x)    (x)   and     Fx,y,a(2(x))  Fx,y ,a((x)). 

Letting r , we have Fyn, yn+1,a(r(x))  1, yields  

       Fyn, yn+1,a(x)      Fyn-1, yn,a((x))        ...     Fy0, y1,a(n(x)). 

Therefore by Lemma 2.3, {yn} is a Cauchy sequence in X.  

 By completeness of X, {yn} and also its subsequences {Ax2n}, {Bx2n-1}, {Sx2n} and {Tx2n-1} 

converge  to some z in X. 

 Suppose that T is continuous then TTx2n-1, TBx2n-1  Tz. Since B, T are compatible of type (A), 

then by Proposition 2.2, BTx2n-1  Tz. 

Using (3.4), we have 

                 FAx2n-1, BTx2n-1,a(x)  min {FSx2n-2, T
2

x2n-1,a((x)), FBTx2n-1,T
2

x2n-1,a((x)), 

     FSx2n-2, Ax2n-2, a((x)), FAx2n-2, T
2

x2n-1,a((x)),  

     FBTx2n-1, Sx2n-2, a((2 - )(x))}. 

Letting n  and making 1, we obtain  

  Fz, Tz, a(x)    Fz, Tz, a((x)). 

Inductively, we have 

  Fz, Tz, a(x)        Fz, Tz,a((x))      Fz, Tz, a(2(x))    

               ...      Fz, Tz, a(r(x))  1   as r ,    yields       

               Tz  =   z.   

Similarly,  

         Bz =   z.  

 Since B(X)  S(X), there exists point u in X such that  
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   z   =   Bz   =   Su.  

 Again using (3.4), we have 

       FAu, z, a(x)   =   FAu, Bz, a(x)    

      min {Fz,  z, a(y(x)), Fz, z, a(y(x)), Fz,  Au, a(y(x)),   

    FAu, z, a(aY(x)), Fz, z, a((2 - )Y(x))}. 

 Making 1,    we get  

  FAu, z, a(x)      FAu, z, a((x)),      yields     

               Au   =  z. 

Since A, S are compatible of type (A) and z = Au = Su, by Proposition 2.6,   

Az = ASu = SAu = Sz.   

Using (3.4), we have 

            FAz, z, a(x)  =   FAz, Bz, a(x)  

            min {FAz, z, a((x)), Fz, z, a((x)), FAz, Az, a((x)),   

      FAz, z, a( (x)), Fz, Az, a((2 - )(x))}. 

 Making 1,  we get  

  FAz, z, a(x)    FAz, z, a(Y(x)),     yields  

   Az  =  z. 

 Therefore,   

   Az  =    Bz   =   Sz   =   Tz   =   z.  

 Now for uniqueness of z, let z' be another common fixed point of  A, B, S and T then from  (3.4), we 

have 

    Fz, z', a(x)   =   FAz, Bz', a(x)   

             min {Fz, z', a ((x)), Fz', z', a((x)), Fz, z, a((x)),   

      Fz, z', a((x)), Fz', z, a((2 - )(x))}. 

Making 1, we get 

  Fz, z', a(x)    Fz, z', a((x)),    yields  

     z =  z'.  

This completes the proof.           

 As a corollary of theorem 3.1, we obtain the following result. 

Corollary 3.1.  Let  A, B, S and  T be self  mappings of a complete Menger space (X, F, min) satisfying  (3.1),  

(3.4) and  

(3.5) S and T are continuous. 

(3.6) (A, S) and (B, T) are pairs of compatible maps, 

Then the conclusion of theorem 2.2.1 holds. 
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Proof. From (3.5) if S and T are continuous they by Proposition 2.4, (3.6) implies (3.3). Hence the proof of the 

corollary. 
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