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Abstract 

This paper deals with analytical approach of LMS algorithm. Stability analysis of LMS for various values of 

step size has been simulated along with mathematical derivation of stability criteria. Coefficient behavior, MSE, 

EMSE etc. parameters have been analyzed and simulated. QAM reception of LMS algorithm for various values 

of step size (µ), SNR along with convergence rate has been simulated.   
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1. INTRODUCTION 

In training based data-aided or data supervised equalization techniques [1][8], a pre-known chunk of training 

data known as training/pilot sequence is introduced to the receiver which helps the receiver adapt to the channel 

variations and then utilize that pilot sequence to estimate channel and to eliminate or minimize inter-symbol 

interference (ISI). Merits of data aided based equalization technique include rapid convergence rate, better 

efficiency, low complexity and has simple application and implementation. This technique is considered suitable 

for environment where fast fading with high Doppler spread and little coherence time is present. The demerit of 

this kind of equalizer is requirement of pilot signals constantly. The constant transmission of the pilot data 

sequence consumes significant bandwidth which leads to slow data transmission rate. A portion of precious and 

limited bandwidth is occupied by training data. In GSM network, about 18% of the bandwidth is consumed by 

the pre-known data sequence that is sent to receiver periodically. There are various training or data supervised 

algorithms that can be used in a training-based adaptive equalizer e.g. LMS [1][3], NLMS[16-18], APA[15] and 

RLS [2][7]. These algorithms are adaptive in nature to deal with time varying behavior of transmission channel.  

 

2. LEAST MEAN SQURE (LMS)[8] 

An N-dimensional input vector, α(n) =[ α(n)  α(n-1) ••••••α(n-N+1)]
T
  Here [.]

T
 denotes Transpose of a Matrix. 

Tap Weight vector, w =[w1   w2 ••••••••••••••••   wN]
T 

and α(n): zero-mean (µα=0), Wide Sense Stationary (WSS) 

input signal.  w: N-tap FIR-filter with filter weights: w1   w2 ••••••••••••••••••••• wN ,y(n): output of filter given 

by,  y(n) =  = w
T
α(n) = α

T
(n)w

 

d(n): zero-mean (µd=0), Wide Sense Stationary (WSS) desired signal and ε(n): error signal 

Here, α(n) and d(n) are assumed to be jointly WSS.    
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                                                                          Rαα= E[α(n)α
H
(n)]                                                                   

(1) 

Rαα=  

Here, Rααis the correlation matrix of the input vector α(n), E[.] & „*‟ denote Expectation Operator & Conjugate 

respectively. 

                                                                        Pαd = E[α(n)d(n)]                                                                          (2) 

Pαd = [Pαd(n,n) ........................ Pαd(n-N+1,n)]
T
 

Pαd denotes the cross-correlation matrix between input signal vector α(n) and the desired signal d(n). 

2.1 The Wiener-Hopf  Equation for WSS 

The adaptive filtering situation with non time-varying or stationary filter coefficients is depicted in Fig.1. 

 

Fig.1.Adaptive Filtering schematic in Wide Sense Stationary (WSS) environment 

Then 

ε(n) = [d(n) – y(n)] = d(n) – α
T
(n)w 

Now, the Mean Squared Error (MSE) is minimized. 

E[ε(n)
2
] = E[{d(n) - y(n)}

2
] 

E[ε(n)
2
] = E[d(n)

2
+ y(n)

2
-2d(n)y(n)] 

                                                      E[ε(n)
2
] = σd

2
+ w

H
Rααw-2w

H
Pαd = ξ

2
min(w)                                                      (3) 

Here, ξ
2

min(w) denotes cost function that has to be minimized. This notation ξ
2

min(w) denotes this is second order 

equation of weight coefficient. ▼w[.] denotes derivative of function w.r.t. „w‟. 

▼w[ξ
2

min(w)] = 0 

 ▼w[σd
2
]+ ▼w[w

H
Rααw]-2▼w[w

H
Pαd]= 0  

Now 

▼w[σd
2
] = 0, ▼w[w

H
Rααw] = 2Rααw & ▼w[w

H
Pαd] = Pαd 

0 + 2Rααw - 2Pαd = 0 

                                                                         wopt = w = R
-1

αα Pαd                                                                       (4) 
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wopt corresponds to unique solution to the Wiener-Hopf equation. 

For minimum solution, second derivative is calculated. 

▼w{▼w[ξ
2

min(w)]} 

Where:  ▼w{▼w[Rααw]} = Rαα  & ▼w{▼w[Pαd]} = 0 

▼w{▼w[ξ
2

min(w)]} = Rαα 

Where, Rαα is a positive definite (P.D.) matrix. Hence, it is indeed a global minima. 

It can be concluded that: 

 ξ
2
min(w) is a convex function, 

 Rαα is not singular but invertible matrix, 

 wopt = w = R
-1

ααPαdis the global minimiser,  

The solution wopt is often referred to as the least-mean-squares solution or optimal solution. 

2.2 The Wiener-Hopf Equation for non-WSS  

If α(n) and d(n) are not jointly WSS, Filter coefficients are not fixed but adaptive or time varying in nature.  

 

Fig.2. Adaptive Filtering schematic in non-Wide Sense Stationary (WSS) environment 

The optimal solution can be calculated: 

                                                                  wopt(n) = R
-1

αα(n) Pαd(n)                                                                      (5) 

However, this method may have following demerits:  

 The computational complexity is very high 

 The statistics are not known. 

The steepest descent (SD) algorithm overcomes with computational complexity problem, but least-mean-square 

(LMS) adaptive filter overcomes both the problems. 

2.3 STEEPEST DESCENT METHOD [8] 

The fundamental behind the steepest descent (SD) algorithm is to approach at the unique solution wopt of the 

Wiener-Hopf equation through a sequence of steps, beginning from some initial point, say, wini(0). These 

sequence of steps are followed in negative direction of the gradient ▼w[ξ
2

min(w)] to reach the minima. This idea 

is depicted in Fig. 3 and Fig. 4. The filter coefficients are calculated by a recursive update equation given by:  
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Fig.3.First 3 iterations of the SD Procedure for 1-D filter vector. 

 

 

 

Fig.4.First 3 iterations of SD Procedure for 2-D filter vector. 

 

 

Fig.5. MSE performance curve in 3D 
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                                                              w(i+1) = w(i) −  ▼w[ξ
2
min(w)]                                                               (6) 

where: ▼w[ξ
2

min(w)] = 2Rααw - 2Pαd 

w(i+1) = w(i) + µ[Pαd - Rααw(i)] 

Eqn. (6) is an offline procedure. It can further be modified in online LMS procedure or more precisely saying 

data dependent procedure. For online procedure „n‟ is used instead of „i‟. 

Steepest Descent Procedure: 

1 Initialization of SD algorithm with an initial value wini(0). 

2 Iterating it for i= 0; 1; 2; 3; : : : ; imax 

3 Update equation for SDP:  w(i+1) = w(i) + µ[Pαd - Rααw(i)] 

2.4 Least Mean Square Procedure: 

Now Rαα& Pαd matrices can be approximated as:  

Rαα = E[α(n)α
H
(n)] ≈ α(n)α

H
(n) and Pαd = E[α(n)d(n)] ≈ α(n)d(n) 

From eqn. (6) 

w(n+1) = w(n)+µ[Pαd - Rααw(n)] 

                                                                w(n+1) = w(n)+µα(n)ε*(n)                                                                    (7) 

Eqn (7) represents the weight update of LMS algorithm. 

2.5 LMS Algorithm: 

1 Initialization of SD algorithm with an initial value wini(0), for example w(0) = 0. 

2 Iterating it for n = 0; 1; 2; 3; : : : ; nmax 

3Filter output: y(n) =w
T
α(n)=α

T
(n)w 

4 Output error: ε(n) = [d(n) – y(n)] = d(n) – α
T
(n)w 

5 Weight update equation:  w(n+1) = w(n)+µα(n)ε*(n) 

 

Table 1: Computational Cost of LMS 

Terms × + or - 

α
H
(n)w N N-1 

ε(n) = d(n) - α
H
(n)w - 1 

με(n) 1 - 

μα(n)ε*(n) N - 

w(n) + μα(n)ε*(n) - N 

Total 2N+1 2N 

Analysis of LMS  
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Define the weight error: 

                                                                       ∆(n) = w(n) - wopt                                                                           (8) 

Step size parameter is chosen such that SD algorithm converges to optimal solution wopt. It follows as: 

 

When α(n) and d(n) are WSS jointly, the SD algorithm is said to be stable. Moreover, step size (μ) is selected 

such that the ∆(n) approaches to the smallest value as fast as possible. 

 

Convergence Analysis: 

w(n+1)= w(n)+µα(n)ε*(n) 

[w(n+1) - wopt] = [w(n) - wopt] +µα(n)ε*(n) 

∆(n+1)= ∆(n)+µα(n)ε*(n) 

∆(n+1)=∆(n)+µα(n)d(n) - µα(n)α
H
(n)wopt - µα(n)α

H
(n)∆(n)                                       (9) 

We define: E[∆(n)]=υ(n) 

Now taking Expectation operator on both sides: 

From eqn.(9), we get     E[∆(n+1)]=E[∆(n)+µα(n)d(n) - µα(n)α
H
(n)wopt- µα(n)α

H
(n)∆(n)] 

υ(n+1)= υ(n)+ µ[Pαd - Rααwopt]-µE[α(n)α
H
(n)∆(n)] 

From Wiener-Hopf result wopt = w = R
-1

ααPαd, we get: υ(n+1)= υ(n) - µE[α(n)α
H
(n)∆(n)] 

Using Statistically Independent Assumption: 

υ(n+1)= υ(n)- µE[α(n)α
H
(n)]E[∆(n)] 

                             υ(n+1)=[I- µRαα]υ(n)                                                                     (10) 

Rαα is a Harmitian & positive definite matrix. It has an eigen value decomposition Rαα=TΛT
H
.  T is orthogonal 

& unitary matrix & [I- µΛ] is matrix with diagonal elements. The n‟th diagonal of [I- µΛ] is given by the mode 

(1−μλn). 

υ(n+1)=T[I- µΛ] T
H
υ(n) 

 Pre-multiplying by T
H
.  We get:                       T

H
υ(n+1)=[I- µΛ] T

H
υ(n) 

We define: ύ(n) = T
H
υ(n) 

                      ύ(n+1)=[I- µΛ]ύ(n)                                                                      (11) 

║ύ(n)║
2
 =0, if n approaches to ∞. 

         ║ύ(n+1)║
2
 =

2
║υ(n)║

2
                                                        (12) 

If (1-µλi)
2
<1, then required condition is satisfied. ║ύ(n)║

2
 =0, if n approaches to ∞. 

Iff                                                                                 0 < µ <  

For universal bound: 
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                            0 < µ <                                                                (13) 

Step size parameter (μ) plays critical role in the stability of SD algorithm. 

Since λmax is not known and difficult to estimate, it can further be restricted by: 

λmax Tr[Rαα] = NE[α
2
(n)]  NSmax 

While the power E[α
2
(n)] estimation or the maximum power spectral density Smax is moderately easy. It can 

further be extended:  

                        0 < µ <                                                               (14) 

|1 − μλn | is close to 0, it corresponds to fast convergence mode. 

|1−μλn| is close to 1, it corresponds to slow convergence mode. 

Finding optimal step size (µo): 

The optimal step-size µo must satisfy 

(1- µoλmin) = -(1- µoλmax) 

µo =                                                               (15) 

 

Fig.7. Finding the optimal step-size 

2.6 CONDITION NUMBER[κ(Rαα)] 

 

The slowest modes ±(1- µo λmax) and ±(1- µo λmin) for optimal step size is given by: 

±  = ±                                                        (16) 

where κ(Rαα)=  is known as the condition number for the correlation matrix Rαα. Large condition number 

leads to the slowest mode approaches to 1and vice versa. When slowest modes are near 0, rate of convergence 

of SD algorithm is fast. 
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ε(n) = [d(n) – y(n)] = d(n) – w
T
(n)α(n) 

ε(n) = εopt(n) - ∆(n)
 T

α(n)                                                                  

(17) 

εopt(n) is the error at w = wopt point. 

E[ε
2
(n)] = E[ε

2
opt(n)] – 2E[∆(n)

T
α(n)εopt(n)] + E[{∆(n)

T
α(n)}

2
]                              (18) 

Using Statistically Independent Assumption: 

E[ε
2
(n)] = E[ε

2
opt(n)] – 2E[∆(n)

T
]E[α(n)εopt(n)] + E[{∆(n)

T
α(n)}

2
] 

Since α(n) &εopt(n) are un-correlated and orthogonal to each other. Hence, E[α(n)εopt(n)] = 0 

E[ε
2
(n)] = E[ε

2
opt(n)] + E[{∆(n)

T
α(n)}{∆(n)

T
α(n)}

T
]                                          (19) 

E[ε
2
(n)] = E[ε

2
opt(n)] + Tr{E[∆(n)∆(n)

T
]Rαα}                                                  (20) 

Here we define: E[∆(n)∆(n)
T
] = Қ (n), Қ (n) is Weight Error Co-variance Matrix.  

E[ε
2
(n)] = E[ε

2
opt(n)] + Tr[Қ (n)Rαα]  

Using property of trace of a matrix: 

E[ε
2
(n)] = E[ε

2
opt(n)] + Tr[T

HҚ (n)TΛ]                                                      (21) 

We define:  Ҝ (n) = T
HҚ (n)T 

E[ε
2
(n)] = E[ε

2
opt(n)] + ii(n)λi 

Now, we know: 

∆(n+1)= ∆(n)+µα(n)[d(n)-α
H
(n)w(n)] 

∆(n+1)= ∆(n)+µα(n)[d(n)- α
H
{∆(n) + wopt] 

∆(n+1)=[I- µα(n)α
H
(n)]∆(n) + µα(n)εopt                                                                                (22) 

Here, we define: T
H
[∆(n+1)]= ∆‟(n+1), T

H
[∆(n)]= ∆‟(n), T

H
[α(n)]= α‟(n),  

∆‟(n+1)=[I- µα‟(n)α‟
H
(n)]∆‟(n) + µα‟(n)εopt                                           (23) 

We want to find out:  

Ҝ (n) = T
HҚ (n)T=E[∆‟(n+1)∆‟

H
(n+1)]                                              (24) 

 

 

 

2.7 Excess Mean Square Error (EMSE): 

ξ
2
minex(∞)=ξ

2
min  

Assuming input symbols and desired signal are jointly Gaussian. Now, using Matrix Inversion Lemma: 

ξ
2

minex(∞) µ ξ
2
min                                                     (25) 
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If µ is taken small,  

ξ
2

minex(∞)  Tr[Rαα]ξ
2
min                                                                                              (26) 

EMSE, the mean-square deviation (MSD), and the misadjustment are calculated when LMS algorithm is in 

steady state.  

2.8 MSE Misadjustment, M(∞) 

M(∞) = Tr[Rαα]                                                         (27) 

ξ
2

minex(∞) denotes steady state excess mean error. 

 

Fig. 8. EMSE & MSE Cost Function 

2.9 Mean Square Deviation (MSD) 
 

E[‖∆(n=∞)‖2
]=                                              (28) 

 
These approximations are valid for considering small value of step size (µ). EMSE is approximately 

proportional to the input signal power. This is an undesirable problem and termed as gradient noise 

amplification. 

 

E[‖∆(n=∞)‖2
]                                                   (29) 

 

3. Simulation Results & Conclusion 

QAM reception of LMS algorithm has been simulated for µ = 0.030 at SNR = 25 dB. Convergence rate of LMS 

for various values of µ has been simulated. It is observed convergence increases up to a certain point and LMS 

algorithm becomes unstable beyond that point. QAM reception for different values of step sizes and SNR has 

also been simulated to verify the robustness of LMS. It is observed that LMS is easy to implement than analyze.  
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Fig. 9. 4-QAM Reception of LMS Algorithm in noise at SNR=25 dB & µ=0.03 

 

 

Fig. 10. Convergence behaviour of LMS Algorithm for different values of step sizes (µ) 
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Fig. 11. 4-QAM reception of LMS Algorithm for different values of step sizes (µ) 

 

Fig. 12. 4-QAM reception of LMS Algorithm for different values of SNR 



 
 

12 | P a g e  
 

 

 

Fig. 13.  Average Coefficient Trajectories, MSE and Squared Error of LMS for µ = 0.005 

 

 

 

 

Fig. 14.  Average Coefficient Trajectories, MSE and Squared Error of LMS for µ = 0.020 
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Fig. 15.  Average Coefficient Trajectories, MSE and Squared Error of LMS for µ = 0.035 

 

Fig. 16.  Average Coefficient Trajectories, MSE and Squared Error of LMS for µ = 0.045 
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