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Abstract

This paper deals with analytical approach of LMS algorithm. Stability analysis of LMS for various values of
step size has been simulated along with mathematical derivation of stability criteria. Coefficient behavior, MSE,
EMSE etc. parameters have been analyzed and simulated. QAM reception of LMS algorithm for various values

of step size (), SNR along with convergence rate has been simulated.
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1. INTRODUCTION

In training based data-aided or data supervised equalization techniques [1][8], a pre-known chunk of training
data known as training/pilot sequence is introduced to the receiver which helps the receiver adapt to the channel
variations and then utilize that pilot sequence to estimate channel and to eliminate or minimize inter-symbol
interference (ISI). Merits of data aided based equalization technique include rapid convergence rate, better
efficiency, low complexity and has simple application and implementation. This technique is considered suitable
for environment where fast fading with high Doppler spread and little coherence time is present. The demerit of
this kind of equalizer is requirement of pilot signals constantly. The constant transmission of the pilot data
sequence consumes significant bandwidth which leads to slow data transmission rate. A portion of precious and
limited bandwidth is occupied by training data. In GSM network, about 18% of the bandwidth is consumed by
the pre-known data sequence that is sent to receiver periodically. There are various training or data supervised
algorithms that can be used in a training-based adaptive equalizer e.g. LMS [1][3], NLMS[16-18], APA[15] and

RLS [2][7]. These algorithms are adaptive in nature to deal with time varying behavior of transmission channel.

2. LEAST MEAN SQURE (LMS)[8]
An N-dimensional input vector, a(n) =[ a(n) o(n-1) ssssssq(n-N+1)]" Here [.]" denotes Transpose of a Matrix.

Tap Weight vector, W =[W; W, sseesssssscccees wy]"and a(n): zero-mean (W,=0), Wide Sense Stationary (WSS)
input signal. w: N-tap FIR-filter with filter weights: w; W, seeseesscsscesccesces vy y(n): output of filter given
by, y(n) =Zi&5" wi afn — i) = w'a(n) = «"(Nw

d(n): zero-mean (p4=0), Wide Sense Stationary (WSS) desired signal and &(n): error signal

Here, a(n) and d(n) are assumed to be jointly WSS.
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Ru= E[a(m)a"(n)]
@
R (0) = Rga(N-1)
Ru= i ;
Raa(N—1) - Rgqe(0)

Here, R,is the correlation matrix of the input vector a(n), E[.] & ‘** denote Expectation Operator & Conjugate

respectively.

Pua = E[a(n)d(n)] @
Pad = [Pod(NN) cooeeeeeecereae, Poa(n-N+1,n)]"
P4 denotes the cross-correlation matrix between input signal vector a(n) and the desired signal d(n).
2.1 The Wiener-Hopf Equation for WSS
The adaptive filtering situation with non time-varying or stationary filter coefficients is depicted in Fig.1.

din)

y(n)
U[) —p  W{ W7 seese Wy > + > cn)

Fig.1.Adaptive Filtering schematic in Wide Sense Stationary (WSS) environment

Then

g(n) = [d(n) - y(M)] = d(n) — &’ (Mw
Now, the Mean Squared Error (MSE) is minimized.

E[g(n)’] = E[{d(n) - y(n)}’]
E[g(n)] = E[d(n)*+ y(n)*-2d(n)y(m)]
E[6(n)’] = 0g"+ W"RuuW-2W"Pyg = Emin(W) €)

Here, ézmin(w) denotes cost function that has to be minimized. This notation ézmin(w) denotes this is second order

equation of weight coefficient. ¥ [.] denotes derivative of function w.r.t. ‘w’.

Vo [Emin(W)] = 0
V. [o67 1+ ¥ u[W'RW]-2 ¥, [WHP,4]= 0
Now
¥.[06°1 =0, ¥, [W'RW] = 2R,W & ¥ [W'Py] = Poy
0 + 2RyW - 2Pq= 0

Wopt =wW= R—lua Pad (4)
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Wopt COrresponds to unique solution to the Wiener-Hopf equation.
For minimum solution, second derivative is calculated.
Vol Vol Emin(W)1}
Where: ¥V, {V, [ReW]} =Ry & ¥ {Vu[Pual}=0
Vol Vo[ & min(W)]} = Rug

Where, R, is a positive definite (P.D.) matrix. Hence, it is indeed a global minima.
It can be concluded that:

e Ein(w) is a convex function,

e R, isnotsingular but invertible matrix,

¢ Wy =W= R™,oP.dis the global minimiser,
The solution wy is often referred to as the least-mean-squares solution or optimal solution.
2.2 The Wiener-Hopf Equation for non-WSS
If a(n) and d(n) are not jointly WSS, Filter coefficients are not fixed but adaptive or time varying in nature.

din)

i)

() m—p wy(n) wx{n) sees wy{n) S + » an)

Fig.2. Adaptive Filtering schematic in non-Wide Sense Stationary (WSS) environment
The optimal solution can be calculated:
Wop() = R™4(1) Poa(n) ®)
However, this method may have following demerits:
e  The computational complexity is very high
e  The statistics are not known.

The steepest descent (SD) algorithm overcomes with computational complexity problem, but least-mean-square

(LMS) adaptive filter overcomes both the problems.

2.3 STEEPEST DESCENT METHOD [8]

The fundamental behind the steepest descent (SD) algorithm is to approach at the unique solution wgy of the
Wiener-Hopf equation through a sequence of steps, beginning from some initial point, say, wi,(0). These
sequence of steps are followed in negative direction of the gradient ¥ ,,[£%in(W)] to reach the minima. This idea

is depicted in Fig. 3 and Fig. 4. The filter coefficients are calculated by a recursive update equation given by:
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Fig.3.First 3 iterations of the SD Procedure for 1-D filter vector.
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Fig.4.First 3 iterations of SD Procedure for 2-D filter vector.
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Fig.5. MSE performance curve in 3D
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w(it1) = w(i) = 5 Wl Enin(W)] (6)

where: ¥, [E2in(W)] = 2RyoW - 2Py
w(i+1) = w(i) + U[Puq - RuaW(i)]
Eqn. (6) is an offline procedure. It can further be modified in online LMS procedure or more precisely saying

data dependent procedure. For online procedure ‘n’ is used instead of ‘i’.
Steepest Descent Procedure:

1 Initialization of SD algorithm with an initial value w;y;(0).

3 Update equation for SDP: w(i+1) = w(i) + I[Py - RaaW(i)]
2.4 Least Mean Square Procedure:
Now R,,& P4 matrices can be approximated as:
Ruo = E[a(n)a"(n)] = a(n)a"'(n) and Pyg = E[a(n)d(n)] = a(n)d(n)

From eqn. (6)

w(n+1) = W(n)+p[Poq - RuaW(N)]

w(nt1) = w(n)+pa(n)s*(n) @)
Eqgn (7) represents the weight update of LMS algorithm.
2.5 LMS Algorithm:

1 Initialization of SD algorithm with an initial value w;,;(0), for example w(0) = 0.
2 Iterating it forn=0; 1; 2; 3; : : : ; Nmax

3Filter output: y(n) =w'a(n)=a" (N)w

4 Output error: g(n) = [d(n) — y(n)] = d(n) — o' (N)w

5 Weight update equation: w(n+1) = w(n)+ua(n)e*(n)

Table 1: Computational Cost of LMS

Terms X +or -
o (n)w N N-1
e(n) = d(n) - " (N)W - 1
pe(n) 1 -
po(n)e*(n) N -
w(n) + po(n)e*(n) - N
Total 2N+1 2N

Analysis of LMS
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Define the weight error:
A(n) = W(n) = Wopt (8)

Step size parameter is chosen such that SD algorithm converges to optimal solution wqy. It follows as:

lim Aln) = 0

M=

When o(n) and d(n) are WSS jointly, the SD algorithm is said to be stable. Moreover, step size (u) is selected

such that the A(n) approaches to the smallest value as fast as possible.

Convergence Analysis:
w(nt1)=w(n)+pa(n)e*(n)
[W(n+1) - Wop] = [W(N) - Wapd] +ua(n)e*(n)
A(n+1)= A(n)+pa(n)e*(n)
A+1)=A(n)+pa(m)d(n) - pa(n)a(nWey - pan)a(m)Am) ©)
We define: E[A(n)]=v(n)
Now taking Expectation operator on both sides:
From eqn.(9), we get  E[A(n+1)]=E[A(n)+pa(n)d(n) - po(n)o (N)Wep- pa(n)a(n)A(n)]
(1= 0(n)+ P[Pog - RuaWopd -HE[a(n)a (n)A(n)]
From Wiener-Hopf result wyy = W = R™ Py, We get: v(n+1)=v(n) - pE[o(n)a"(n)A(n)]
Using Statistically Independent Assumption:
v(n+1)=v(n)- pE[a(n)o"(n)]E[A(n)]
v(n+1)=[I- PRy, ]v(n) (10)
Ru. is @ Harmitian & positive definite matrix. It has an eigen value decomposition R, =TAT". T is orthogonal

& unitary matrix & [I- pA] is matrix with diagonal elements. The n’th diagonal of [I- uA] is given by the mode
(1)
o(n+1)=T[I- pA] T o(n)
Pre-multiplying by T". We get: THo(n+1)=[1- nA] TMv(n)
We define: H(n) = Tv(n)
H(nt+1)=[I- pA]O(n) (11)
|| 5(n) ||? =0, if n approaches to .
o+ |7 =Eio (1 — uid?[|om) || (12)

If (1-uA;)><1, then required condition is satisfied. ||o(n)||* =0, if n approaches to oo.
Iff O<H<z

For universal bound:
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0<pe— (13)

Step size parameter (u) plays critical role in the stability of SD algorithm.
Since Amax is NOt known and difficult to estimate, it can further be restricted by:
Amax ZTr[Raa] = NE[0(0)] = NSpa
While the power E[o?(n)] estimation or the maximum power spectral density Sy, is moderately easy. It can

further be extended:

Tr[Rygl

O<pu< (14)

|1 — pA, | is close to O, it corresponds to fast convergence mode.
[1—pAy| is close to 1, it corresponds to slow convergence mode.
Finding optimal step size (M,):
The optimal step-size |, must satisfy

(1- Hormin) = -(1- Homax)

(15)

Fig.7. Finding the optimal step-size
2.6 CONDITION NUMBER[k(R,,)]

The slowest modes +(1- o Amax) and £(1- o Amin) for optimal step size is given by:

Amex — Amin -+ k(Bgpl—1 (16)
T Amex T Amin 0 ®(Rggitil

fma

where k(Ry,)= | is known as the condition number for the correlation matrix R,,. Large condition number

Amin

leads to the slowest mode approaches to land vice versa. When slowest modes are near 0, rate of convergence

of SD algorithm is fast.
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e(n) = [d(n) - y(n)] = d(n) ~ w'(m)a(n)
6(n) = gon(n) - A() "o(n)
17

€opt(N) s the error at w = W point.
E[e*(n)] = E[¢”o()] - 2E[A(M) "a(n)eop(m)] + E[{A(M) a(n)}’] (18)
Using Statistically Independent Assumption:
E[e”(n)] = E[&’op(M)] — 2E[A(M) "TE[a(n)eope(N)] + E[{A(N) a(n)}*]
Since a(n) &eqp(N) are un-correlated and orthogonal to each other. Hence, E[a(n)gqp(n)] = 0
E[¢*(n)] = E[¢%p(n)] + E[{AM) "o(n)} {A(M) "o(n)} ] (19)
E[e*(n)] = E[¢o(n)] + THE[AMAM) TRuo} (20)
Here we define: E[A(n)A(n)'] = K (n), K (n) is Weight Error Co-variance Matrix.
E[£"(n)] = E[e’op(n)] + Tr[K (M)Ru]
Using property of trace of a matrix:
E[&*(n)] = E[e’o(M)] + TIT"K () TA] (21)
We define: K(n)=T"K(n)T
E[£"(0)] = E[e’op(n)] + ZiZo Kii(n)h
Now, we know:
A(n+1)= A(n)+po(n)[d(m)-a"(Mw(n)]
A(n+1)= An)+pam)[dn)- o {A(n) + Wop]
A(+1)=[I- po(n)a"(n)]A(n) + pa(n)ep (22)
Here, we define: T"[A(n+1)]= A’(n+1), T[A(n)]= A’(n), T [a(n)]= o’ (n),
A (n+1)=[1- po’ (Mo ()]A’ () + pa’(n)eopt (23)
We want to find out:

K (n) = T"K (n)T=E[A’(n+1)A’"(n+1)] (24)

2.7 Excess Mean Square Error (EMSE):

Elw)
1=

Eszinex(oo):évzmin

Assuming input symbols and desired signal are jointly Gaussian. Now, using Matrix Inversion Lemma:

Tr[Ranl ]
2~ uTr[Ran]

gzminex(oo)ﬂ'{“ ézmin[ (25)
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If p is taken small,
ézminex(oo);\d E Tr[Raa]E.'zmin (26)

EMSE, the mean-square deviation (MSD), and the misadjustment are calculated when LMS algorithm is in

steady state.

2.8 MSE Misadjustment, M(x)
Ez . |"m-:|
M(e0) = =ZHEE—— & —Tr[R,] @7)
“min* w) =

2
& minex(©) denotes steady state excess mean error.

Eunlw(n))

1 EMSE

o
n

Fig. 8. EMSE & MSE Cost Function
2.9 Mean Square Deviation (MSD)

oA i TN 1
E[l|A(n=w0)||]= 1_FI:“}EH=1 1w

(28)

These approximations are valid for considering small value of step size (). EMSE is approximately
proportional to the input signal power. This is an undesirable problem and termed as gradient noise
amplification.
M2

E[llA(n=0) (7] ¥ S5 N (29)
3. Simulation Results & Conclusion
QAM reception of LMS algorithm has been simulated for i = 0.030 at SNR = 25 dB. Convergence rate of LMS
for various values of p has been simulated. It is observed convergence increases up to a certain point and LMS

algorithm becomes unstable beyond that point. QAM reception for different values of step sizes and SNR has

also been simulated to verify the robustness of LMS. It is observed that LMS is easy to implement than analyze.
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Fig. 9. 4-QAM Reception of LMS Algorithm in noise at SNR=25 dB & p=0.03
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Fig. 13. Average Coefficient Trajectories, MSE and Squared Error of LMS for p = 0.005
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