International Journal of Advanced Technology in Engineering and Science

Vol. No. 10, Issue No. 03, March 2022 www.ijates.com



# V<sub>4</sub>-Vertex Magic labeling for Hexagonal Mesh and Honeycomb Graph

S.Kavitha<sup>1</sup>, V.L.Stella Arputha Mary<sup>2</sup>

<sup>1</sup>Research Scholar (Full Time), Register Number 19212212092007 Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India <sup>1</sup>kavithavikunth@gmail.com
<sup>2</sup>Assistant Professor, Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi <sup>2</sup>drstellaarputha@gmail.com

## Abstract

Let  $V_4$  be an abelian group under multiplication. Let  $g : E(G) \to V_4 - \{1\}$ . The vertex magic labeling on  $V_4$  is defined as the vertex labeling  $g^* : V(G) \to V_4$ such that  $g^*(v) = \prod_u g(uv)$  where the product is taken over all edges uv of G incident at v is a constant. A graph is said to be  $V_4$  – magic if its admits a vertex magic labeling on  $V_4$ . In this paper we investigate the results on Torus graph, Hexagonal Mesh and Honeycomb graph.

Keyword:  $T_{m,n}$ ,  $HX_n$ , HC(n)

#### AMS subject classification (2010): 05C78

## **1. Introduction**

Laid foundation by Euler in the 18<sup>th</sup> Century, Graph Theory grew wider by Sedlack, Kong, Lee and Sun. Sedlack introduced Magic Labeling Bloom and Golomb connected Graph labeling to a wide range of applications such as Coding theory, Communication design, Radar, Circuit design, Astronomy, Network and Xray crystallography.

Let  $V_4$  be an abelian group under multiplication. Let  $g: E(G) \to V_4 - \{1\}$ . The vertex magic labeling on  $V_4$  is defined as the vertex labeling  $g^*: V(G) \to V_4$ such that  $g^*(v) = \prod_u g(uv)$  where the product is taken over all edges uv of G incident at v is a constant. A graph is said to be  $V_4$ - magic if its admits a vertex magic labeling on  $V_4$ .

The result is verified for Torus graph, Hexagonal Mesh and Honeycomb graph.

#### 2. Preliminaries:

## **Torus Graph**

Cartesian product of two cycles is a Torus graph.

#### **Hexagonal Mesh**

A Hexagonal Mesh of dimension n is denoted by  $HX_n$  and has  $3n^2 - 3n + 1$  vertices and  $9n^2 - 15n + 6$  edges. These are six vertices of degree three called the corner vertices. The centre of  $HX_n$  is at a distance n - 1 from each corner vertex. Hexagonal Mesh has 2n-1 vertical lines. Let the middle line be  $X_0$ , lines on the left side of  $X_0$  are  $X_1, X_2, ..., X_{n-1}$  and the lines on the right side of  $X_0$  are  $X_{-1}, X_{-2}, ..., X_{-n+1}$ .

Labeling for vertices on  $X_0$  are  $v_{1,1}$ ,  $v_{1,2}$ , ...,  $v_{1,2n-1}$ 

Labeling for vertices on  $X_1$  are  $v_{2,1}, v_{2,2}, \dots, v_{2,2n-2}$  and so on Vertices on  $X_{n-1}$  are  $v_{n,1}, v_{n,2}, \dots, v_{n,n}$ .

Labeling for vertices on  $X_{-1}$  are  $v_{-1,1}$ ,  $v_{-1,2}$ , ...,  $v_{-1,2n-1}$  and so on. Finally labeling for vertices on  $X_{-n+1}$  are  $v_{-n+1,1}$ ,  $v_{-n+1,2}$ , ...,  $v_{-n+1,n}$ .

## Illustration: HX<sub>4</sub>



# **Honeycomb Graph**

One dimension of Honeycomb graph is a Hexagon denoted by HC(1). Let this be layer  $L_1$ . HC(2) is constructed by attaching 6 Hexagons on the boundary edges of HC(1). Boundary edges of HC(2) is  $L_2$ .  $L_2$  is connected with  $L_1$  through 6 edges.

 $L_n$  is connected with  $L_{n-2}$  through 6(n-1) edges.

(i.e) HC(n) is constructed by attaching  $L_n$  to  $L_{n-1}$  by 6(n-1) edges. There are  $6n^2$  vertices and  $9n^2 - 3n$  edges in HC(1). Each vertex in HC(n) is denoted by  $v_{pq}$  where p denotes the line number in which the vertex exists and q denotes the position of the vertex in the line.

Illustration: *HC*(3)



#### **3.Main results:**

**Theorem 3.1:** Torus graph  $T_{m,n}$  is  $V_4$ -magic when  $m, n \ge 2$ .

#### **Proof:**

Let G be a Torus graph  $T_{m,n}$ 

Let  $V(G) = \{u_{pq} : 1 \le p \le m; 1 \le q \le n\}$  be the vertex set of *G*.

Let 
$$E(G) = \{u_{pq}u_{p+1,q} : 1 \le p \le m, 1 \le q \le n\} \cup$$

$$\cup \left\{ u_{pq} \ u_{pq+1} : 1 \le p \le m, 1 \le q \le n \right\}$$

 $[u_{p,n+1} = u_{p_1}; u_{m+1,q} = u_{1,q}]$ 

Let us define a function  $g: E(G) \to V_4 - \{1\}$  such that

$$g(u_{pq} u_{p+1,q}) = -i \text{ for } 1 \le p \le m, 1 \le q \le n$$

$$g(u_{pq} u_{pq+1}) = i \text{ for } 1 \le p \le m, 1 \le q \le n$$

Then  $g^*: V(G) \to V_4 - \{1\}$  is

 $g^*(u_{pq}) = 1$  for  $1 \le p \le m, 1 \le q \le n$ .

This labeling holds for all cases whether m, n are either even or odd.

Thus Torus graph becomes a  $V_4$ - vertex magic graph as it satisfies  $V_4$  vertex magic Labeling for  $m, n \ge 2$ .

## Illustration: $T_{6,8}$



## Illustration: $T_{7,8}$



#### **Remark:**

Torus graph can be labelled either with  $\{i\}$  or  $\{-i\}$  or  $\{-1\}$  for all edges. Torus graph can also be labelled by using  $\{i, -i, -1, -1\}$  for the edges meeting at each vertex. Thus getting the magic number "1" under multiplication at each vertex. Hence Torus graph becomes  $V_4$ - magic graph in all cases.

**Theorem 3.2:** For  $n \ge 2$ , Hexagonal Mesh  $HX_n$  becomes a  $V_4$ -magic graph.

#### Proof: :

Let G be the Hexagonal Mesh graph  $HX_n$  where n is the dimension.

Define a mapping  $g: E(G) \to V_4 - \{1\}$  such that

International Journal of Advanced Technology in Engineering and Science Vol. No. 10, Issue No. 03, March 2022 **1**Jates www.ijates.com ISSN 2348 - 7550  $g(v_{p,1} v_{p+1,1}) = \begin{cases} i & if \ p \ is \ odd \ ; 1 \le p \le n-1 \\ -i & if \ p \ is \ even \ ; 1 \le p \le n-1 \end{cases}$  $g(v_{p,1}v_{-p,1}) = i$  when p=1  $g\left(v_{-p,1} \ v_{-(p+1),1}\right) = \begin{cases} -i & \text{if } p \text{ is odd }; 1 \le p \le n-1\\ i & \text{if } p \text{ is even}; 1 \le p \le n-1 \end{cases}$  $g(v_{p,q}, v_{p,q+1}) = -1$ , for  $1 \le p \le n-1$ ;  $1 \le q \le n+1$  if n is even &  $1 \leq q \leq n+2$  (if n is odd)  $g(v_{-p,q}, v_{-p,q+1}) = -1$  when  $1 \le p \le n - 2, 1 \le q \le n + 1$  if n is even &  $1 \le q \le n+2$  (if n is odd)  $g(v_{p,q} v_{p,q+1}) = \begin{cases} -i \ if \ n \ is \ odd \\ i \ if \ n \ is \ even \end{cases}$ When p=n When p = -(n-1) $g(v_{p,q} v_{p,q+1}) = \begin{cases} -i \ if \ n \ is \ odd \\ i \ if \ n \ is \ even \end{cases}$  $g(v_{p,q} v_{p-1,q+1}) = -1$  when  $2 \le p \le n-2, 1 \le q \le n+1$  if n is even &  $1 \le q \le n+2$  (if n is odd)  $g(v_{p,q}, v_{p-2,q}) = -1$  when p = 1, q = 2,3,...,n+1 (if n is even) &  $1 \le q \le n+2$  (if n is odd)  $g(v_{p,q}, v_{p-1,q}) = -1$  when p = n, q = 2, 3, ..., n $g(v_{p,q}, v_{p-2,q-1}) = -1$  when p = 1, q = 2, 3, ..., n+1 (if n is even) & q = 2,3,...,n + 2 (if n is odd)

International Journal of Advanced Technology in Engineering and Science

Vol. No. 10, Issue No. 03, March 2022 www.ijates.com

Then  $g^*: V(G) \to V_4 - \{1\}$  is  $g^*(v_{pq}) = 1$  for all p = 1, 2, ..., n; p = -1, -2, ..., -(n-1); q = 1, 2, ... n

Thus G satisfies  $V_4$ - vertex magic labeling.

Hence Hexagonal Mesh  $HX_n$  is  $V_4$ - magic for  $n \ge 2$ .

## Illustration: *HX*<sub>2</sub>



## Illustration: $HX_3$



ijates

ISSN 2348 - 7550

 $\Box$ 

#### Illustration: *HX*<sub>4</sub>



#### **Remark:**

Hexagonal Mesh can also be labelled by replacing  $\{i\}$  by  $\{-i\}$  and  $\{-i\}$  by  $\{i\}$  to satisfy  $V_4$ - vertex magic labeling.

**Theorem 3.3:** Honeycomb HC(n) is a  $V_4$ - magic graph.

#### **Proof:**

Let G be HC(n) of dimension n.

Let  $V(G) = \{v_{pq} : 1 \le p \le 4n; 1 \le q \le 2n\}$ 

Define a function  $g: V(G) \rightarrow V_4 - \{1\}$  such that

Boundary edges of  $L_1, L_2, ..., L_{n-1}$  are labelled with "*i*" and their connecting edges are labelled with "-1".

Label the boundary edges of  $L_n$  with  $\{i, -i\}$  where two edges incident and with  $\{i, i\}$  or  $\{-i, -i\}$  where there edges incident label the connecting edges between  $L_n$  and  $L_{n-1}$  with " - 1".

# International Journal of Advanced Technology in Engineering and Science

Vol. No. 10, Issue No. 03, March 2022 www.ijates.com

That induces  $g^*: V(G) \to V_4 - \{1\}$  such that

 $g^* \bigl( v_{pq} \bigr) = 1$  for all  $p = 1, 2, \ldots, 4n; q = 1, 2, \ldots, 2n$ 

Thus G satisfies  $V_4$ - vertex magic labeling.

So Honeycomb HC(n) is a  $V_4$ - magic graph.

#### Illustration: HC(3)



**Illustration:** *HC*(4)



 $\square$ 



## **Reference:**

- 1. A. Mahalakshmi, Yamini Latha, A Study of Edge labeling of a Bloom graph **B(m,n)** and its topological properties, *JETIR*, Vol 6, Issue 6, June 2019.
- 2. Antony Xavier, R.C. Thivyarathi, Proper Lucky Number of Hexagonal Mesh and Honeycomb Network, *IJMTT*, Vol 48, Number 4, August 2017.
- 3. Nurdin Hinding, Hya Kyung Kim, Nurtiti Sunusi, Riskawat Mice, On Total Vertex irregularity Strength of Hexagonal Cluster graphs, *International Journal of Mathematics and Mathematical Sciences*, Vol 2021, Article ID 2743859, 9 Pages.
- 4. Signer and Signed Product cordial Labeling of cylinder Graphs and Banana Tree, *IJMTT*, Vol 65, Issue 3, March 2019.
- V. I. Stella Arputha Mary,S. Navaneethakrishnan, A. Nagarajan, Z<sub>4p<sup>2</sup></sub>-Magic Labeling for some special graphs, *International Journal of Mathematics and Soft computing.*, 3(3),61-70,2013.
- 6. S. Amutha, K.M. Kathiresan, *The existence and construction of certain types of labeling for graphs*, Ph.D Thesis, Madurai Kamaraj University, 2006.

- Osama Rashad El-Gendy, On BOI-Algebra, International Journal of Mathematics and Computer Applications Research (IJMCAR), Vol 9, Issue 2, pp. 13-28.
- 8. J. A. Gallian, A dynamic survey graph labeling, *Electronic Journal of Combinatorics*, 17, D56, 2010.
- 9. A. Sangeetha Devi and M.M. Shanmugapriya, Efficient Dominator Coloring in Graphs, *International Journal of Mathematics and Computer Application Research (IJMCAR)*, Vol 6, Issue 3, pp. 1-8.
- 10.K. Radha and N. Kumaravel, The Degree of an Edge in Cartesian product and Composition of Two Fuzzy Graphs, *International Journal of Applied Mathematics & Statistical Sciences (JAMSS)*, Vol 2, Issue 2, pp. 65-78.