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Abstract 

 The main objective of this paper is to discuss a special case in Assignment Problem. It is built 

by using Ramanujan Primes as cost assignments. Some cases receive in-depth investigation. Few 

fruitful outcomes have been established. The generalised optimum assignments are obtained in this 

study. Wherever possible, the representing graphs in various cases are illustrated. 

1.INTRODUCTION: 

This technique was familiar to Denes konig and Jeno, two Hungarian mathematicians. 

The Hungarian approach is the most comprehensive source of combinatorial optimization 

techniques for solving a wide range of difficult assignment problems. In 1955, Harold Kuhn 

developed and published the algorithm. He revealed that the algorithm's name was Hungarian 

algorithm. In 1957, James Munkres investigated that algorithm and discovered that it is 

strongly polynomial. Many mathematicians[1-37] have investigated the applicability of a few 

operations research approaches, which are useful in tracing an optimal solution that meets all 

requirements. The Hungarian Method is one such successful optimization techniques. 

2. RAMANUJAN PRIMES:                 

 Ramanujan started arriving at a holistic viewpoint. i.e the function  

Where  is 

the prime-counting functionwhich is equal to the number of primes less than or equal to x. 

The definition of Ramanujan primes is the inverse of this result: The n
th

Ramanujan prime is 

the least integer Rn for which    It is noted that the 

integer Rn is necessarily a prime number:  and must increase by obtaining 

https://en.wikipedia.org/wiki/Prime-counting_function
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another prime at x = Rn. Since  can increase by at most 

1, .Bounds and an Asymptotic formula are valid for all n≥1, the bounds 

hold. If  n>1, then also where pn is the n
th

 prime 

number. As n tends to infinity, Rn is asymptotic to the 2nth prime, i.e.,Rn ~ p2n (n → ∞). 

3. BASIC ASSIGNMENT MODEL: 

3.1 Case(A).: 

The mathematical model of assignment problem in case (i) is defined as  

/Min Max Z 
5 5

1 1

ij ij

i j

c x
 

  

Subject to the constraints: 
5

1

1ij

i

x


 for j=1,2,3,4 and 5 

5

1

1ij

j

x


 for i=1,2,3,4 and 5 

xij = either 0 or 1 for all i,j 

Here  xij   denotes the assignment   of  i
th

  resource to j
th

   activity with  the successive 

numbers   of Ramanujan  primes column wise.  

Table-1: Tabular Form of  5x5 Assignment Problem with Ramanujan  primes 

5x5 I II III IV V 

A 2 47 101 167 233 

B 11 59 107 179 239 

C 17 67 127 181 241 

D 29 71 149 227 263 

E 41 97 151 229 269 

 

 

https://en.wikipedia.org/wiki/Asymptotic_analysis
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Table-2: Hungarian Method with 5x5 Assignment Problems  

in Minimization Case with cycle-1 

 

Objective 

Function 

Type 

Cycle 
Assigned Zero 

Positions 

Positions Of 

Uncovered Elements 

Minimum No. 

Of Lines In 

Cycle Wise 

Optimal 

Assignment 

Total 

Assignment 

Cost 

Minimiz

ation 

(5x5) 

C1 

(A,I), 

(B,III), 

(C,IV), 

(D,II) 

 

P12,P13,P14,P15, 

P52,P53,P54, P55 

 

4 

(A,IV), 

(B,III), 

(C,V), 

(D,II), 

(E,I) 

627 

 

Table-3: Hungarian Method with 5x5 Assignment Problems  

in Minimization Case with cycle-2 

 

Objective 

Function 

Type 

Cycle 
Assigned Zero 

Positions 

Positions Of 

Uncovered Elements 

Minimum No. 

Of Lines In 

Cycle Wise 

Optimal 

Assignment 

Total 

Assignment 

Cost 

Minimiz

ation 

(5x5) 

C2 

(A,IV), 

(B,III), 

(C,V), 

(D,II), 

(E,I) 

* * 

(A,IV), 

(B,III), 

(C,V), 

(D,II), 

(E,I) 

627 

 

Table-4: Hungarian Method with 5x5 Assignment Problems  

inMaximization Case with cycle-1 

Objective 

Function 

Type 

Cycle Assigned 

Zero 

Positions 

Positions Of 

Uncovered Elements 

Minimum 

No. Of Lines 

In Cycle 

Wise 

Optimal 

Assignment 

Total 

Assignment 

Cost 

Maximiza

tion 

Type 

(5x5) 

C1 

(A,V), 

(C,I), 

(D,III), 

(E,II) 

P11,P12,P13,P14, 

P21,P22,P23,P24, 
4 

(A,V), 

(B,I), 

(C,III), 

(D,IV), 

(E,II) 

695 
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Table-5: Hungarian Method with 5x5 Assignment Problems  

inMaximization Case with cycle-2 

Objective 

Function 

Type 

Cycle Assigned 

Zero 

Positions 

Positions Of 

Uncovered Elements 

Minimum 

No. Of Lines 

In Cycle 

Wise 

Optimal 

Assignment 

Total 

Assignment 

Cost 

Maximiza

tion 

Type 

(5x5) 

C2 

(A,V), 

(B,I), 

(C,III), 

(D,IV), 

(E,II) 

* * 

(A,V), 

(B,I), 

(C,III), 

(D,IV), 

(E,II) 

695 

 

Table-6: Bottle Neck Method With 5x5 Assignment Problem in 

Minimization/Maximization 

Objective Function Type Optimal Assignment Total Assignment Cost 

Minimization(5x5) (A,V),(B,IV),(C,III),(D,II), (E,I) 651 

Maximization(5x5) (A,V),(B,IV),(C,III),(D,II), (E,I) 651 

 

3.2Case(B).: 

The mathematical model of assignment problem in case (i) is defined as  

/Min Max Z 
3 3

1 1

ij ij

i j

c x
 

  

Subject to the constraints: 

5

1

1ij

i

x


 for j=1,2 and 3 

5

1

1ij

j

x


 for i=1,2 and 3 

xij = either 0 or 1 for all i,j 

Here  xij   denotes the assignment   of  i
th

  resource to j
th

   activity with  the successive 

numbers   of Ramanujan  primes column wise.  
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Table-7: Tabular Form of  3x3 Assignment Problem with Ramanujan  primes 

3x3 I II III 

A 2 29 59 

B 11 41 67 

C 17 47 71 

 

Table-8: Hungarian Method with 3x3 Assignment Problems  

in Minimization Case with cycle-1 

 

Objective 

Function 

Type 

Cycle 
Assigned Zero 

Positions 

Positions Of 

Uncovered Elements 

Minimum No. 

Of Lines In 

Cycle Wise 

Optimal 

Assignment 

Total 

Assignment 

Cost 

Minimiz

ation 

(3x3) 

C1 

(A,II), 

(B,I), 

(C,III) 

* * 

(A,II), 

(B,I), 

(C,III) 

111 

 

Table-9: Hungarian Method with 3x3 Assignment Problems  

in Maximization Case with cycle-1 

Objective 

Function 

Type 

Cycle Assigned 

Zero 

Positions 

Positions Of 

Uncovered Elements 

Minimum 

No. Of Lines 

In Cycle 

Wise 

Optimal 

Assignment 

Total 

Assignment 

Cost 

Maximiza

tion 

Type 

(3x3) 

C1 
(A,III), 

(C,I) 
P11,P12,P21,P22 2 

(A,III), 

(B,I), 

(C,II) 

117 

 

 



 
 
 

138 | P a g e  
 

 

Table-10: Hungarian Method with 3x3 Assignment Problems  

in Maximization Case with cycle-2 

Objective 

Function 

Type 

Cycle Assigned 

Zero 

Positions 

Positions Of 

Uncovered Elements 

Minimum 

No. Of Lines 

In Cycle 

Wise 

Optimal 

Assignment 

Total 

Assignment 

Cost 

Maximiza

tion 

Type 

(3x3) 

C2 

(A,III), 

(B,I), 

(C,II) 

* * 

(A,III), 

(B,I), 

(C,II) 

117 

 

Table-11: Bottle Neck Method With 3x3 Assignment Problem in 

Minimization/Maximization 

 

Objective 

Function 

Type 

Cy

cle 

Assigned 

Zero 

Positions 

Positions Of 

Uncovered 

Elements 

Minimum 

No. Of 

Lines in  

Cycle 

Wise 

Optimal 

Assignment 

Total 

Assign

ment 

Cost 

Minimizatio

n 

(3x3) 

C1 (A,II),(B,I) 
P22,P23, 

P32,P33 
2 

(A,III),(B,II), 

(C,I) 
117 

C2 
(A,III),(B,II), 

(C,I) 
* * 

Maximizati

on 

(3x3) 

C1 (A,III),(C,I) 
P11,P12, 

P21,P22 
2 

(A,III),(B,II), 

(C,I) 
117 

C2 
(A,III),(B,II), 

(C,I) 
* * 

 

Based on the sizes of the assignment problems, the polynomials are derived and illustrated as 

below. 
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Table-12: Polynomials at different Cases 

S.No Cases Polynomial 

1 n=1,2 26x-24 

2 n=1,2,3 28.5x
2
-59.5x+33 

3 n=1,2,3,4 7.8333x
3
-18.5x

2
+26.666x-14 

4 n=1,2,3,4,5 -0.375x
4
+11.5833x

3
-31.625x

2
+45.4167x-23 

5 n=1,2,3,4,5,6 0.3083x
5
-5x

4
+37.7916x

3
-101x

2
+129.9x-60 

6 n=1,2,3,4,5,6,7 -0.104x
6
+2.495x

5
-23.229x

4
+114.3541x

3
-270.166x

2
+313.65x-135 

 

 

Grapgh-1 

4.Conclusions: 

In this special case study on the assignment problem with Ramanujan primes, the following 

observations are made. 

(i).The movement of uncovered elements changes in a systematic way, cycle by cycle and 

size by size. 
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(ii).The minimum number of lines required to cover all assigned zeros and other remaining 

zeros plays a significant role in many cycles as the system approaches optimality. 

(iii).The Hungarian method and the Bottle neck method successfully derive the possible 

Optimum Assignments and Total cost values in the cases of Minimization and Maximization 

of this model. 

(iv).The deviation between the Polynomials is gradually reduced in different cases. 
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