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ABSTRACT 

 A transformer is a network of nodes which learns some task by training on an existing set of data. Initially 

transformers were designed to perform natural language processing. In recent times transformers were found to 

give better results for many of the artificial intelligence and computer vision problems. The neural networks and 

deep learning approaches first learn from the local patches of input data and then will try to build up to the 

whole system. The transformer by contrast runs processes so that every element in the input data connects or 

pays attention to every other element and this property is known as self-attention.  This means that as soon as it 

starts training, the transformer can see traces of the entire data set. Transformers are proving surprisingly 

versatile. In some vision tasks, like image classification, neural nets that use transformers have become faster 

and more accurate than those that don’t. Emerging work in other AI areas like processing multiple kinds of input 

at once or planning tasks suggests transformers can handle even more. 

 

1. INTRODUCTION 

 The transformer first appeared in 2017 in a paper that cryptically declared that “Attention Is All You 

Need. While the Transformer architecture has become the de-facto standard for natural language processing 

tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with 

convolutional networks, or used to replace certain components of convolutional networks while keeping their 

overall structure in place. It is proved that this reliance on CNNs is not necessary and a pure transformer applied 

directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on 

large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks like 

ImageNet, CIFAR-100, VTAB, etc., Vision Transformer attains excellent results compared to state-of-the-art 

convolutional networks while requiring substantially fewer computational resources to train. 

 

2. RELATED WORK 

 Transformers were proposed by Vaswani et al. (2017) for machine translation, and have since become 

the state of the art method in many NLP tasks. Large Transformer-based models are often pre-trained on large 

corpora and then fine-tuned for the task at hand: BERT (Devlin et al., 2019) uses a denoising self-supervised 

pre-training task, while the GPT line of work uses language modeling as its pre-training task (Radford et al., 
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2018;). Naive application of self-attention to images would require that each pixel attends to every other pixel. 

With quadratic cost in the number of pixels, this does not scale to realistic input sizes. Thus, to apply 

Transformers in the context of image processing, several approximations have been tried in the past. Parmar et 

al. (2018) applied the self-attention only in local neighborhoods for each query pixel instead of globally. Such 

local multi-head dot-product self attention blocks can completely replace convolutions (Hu et al., 2019;). In a 

different line of work, Sparse Transformers (Child et al., 2019) employ scalable approximations to global 

selfattention in order to be applicable to images. An alternative way to scale attention is to apply it in blocks of 

varying sizes (Weissenborn et al., 2019), in the extreme case only along individual axes (Ho et al., 2019; Wang 

et al., 2020a). Many of these specialized attention architectures demonstrate promising results on computer 

vision tasks, but require complex engineering to be implemented efficiently on hardware accelerators. Most 

related to ours is the model of which extracts patches of size 2 × 2 from the input image and applies full self-

attention on top. This model is very similar to ViT, but our work goes further to demonstrate that large scale 

pre-training makes vanilla transformers competitive with (or even better than) state-of-the-art CNNs. Moreover, 

Cordonnier et al. (2020) use a small patch size of 2 × 2 pixels, which makes the model applicable only to small-

resolution images, while we handle medium-resolution images as well. There has also been a lot of interest in 

combining convolutional neural networks (CNNs) with forms of self-attention, e.g. by augmenting feature maps 

for image classification (Bello et al., 2019) or by further processing the output of a CNN using self-attention, 

e.g. for object detection (Carion et al., 2020), video processing (Wang et al., 2018; Sun et al., 2019), image 

classification (Wu et al., 2020), unsupervised object discovery, or unified text-vision tasks (Chen et al., 2020c;). 

Another recent related model is image GPT (iGPT) (Chen et al., 2020a), which applies Transformers to image 

pixels after reducing image resolution and color space. The model is trained in an unsupervised fashion as a 

generative model, and the resulting representation can then be fine-tuned or probed linearly for classification 

performance, achieving a maximal accuracy of 72% on ImageNet. Our work adds to the increasing collection of 

papers that explore image recognition at larger scales than the standard ImageNet dataset. The use of additional 

data sources allows to achieve state-ofthe-art results on standard benchmarks (Mahajan et al., 2018; Touvron et 

al., 2019; Xie et al., 2020). Moreover, Sun et al. (2017) study how CNN performance scales with dataset size, 

and Kolesnikov et al. (2020); Djolonga et al. (2020) perform an empirical exploration of CNN transfer learning 

from large scale datasets such as ImageNet-21k and JFT-300M. We focus on these two latter datasets as well, 

but train Transformers instead of ResNet-based models used in prior works. 

 

3. TAXONOMY OF TRANSFORMERS  

 A wide variety of models have been proposed so far based on the vanilla Transformer from three 

perspectives: types of architecture modification (lightweight variants, cross-block connectivity, Adaptive 

Computation Time, recurrence & hierarchy, alternative architectures), pre-training methods, and 

applications(Text , Vision, Audio,  Multimodal). There exists a variety of Transformer variants based on several 

characteristics. Categorization at module level based on i) attention (Sparse, Linearized, Prototype, Low Rank, 

Multihead, Prior Attention), ii) position encoding (absolute, relative, implicit), iii) layer normalization 

(placement, substitution, normalization tree) and iv) activation function exists. Architecture level categorization 
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like lightweight (Lite Transformer), connectivity (Realformer, Feedback Transformer) and transformers based 

on divide and conquer (Transformer XL, Compressive Transformer) are used in various scenarios. Based on 

application many categories like BERT, transformer-XL for Natural Language Processing, Image transformer, 

ViT for computer vision, Speech transformer, Music transformer for audio and VisualBERT, VideoBERT for 

multimodal are available. 

  The vanilla Transformer is a sequence-to-sequence model and consists of an encoder and a decoder, 

each of which is a stack of 𝐿 identical blocks. Each encoder block is mainly composed of a multi-head self-

attention module and a position-wise feed-forward network (FFN). For building a deeper model, a residual 

connection  is employed around each module, followed by Layer Normalization module. Compared to the 

encoder blocks, decoder blocks additionally insert cross-attention modules between the multi-head self-attention 

modules and the position-wise FFNs. Furthermore, the self-attention modules in the decoder are adapted to 

prevent each position from attending to subsequent positions.  

 

4. ATTENTION 

 Transformer adopts attention mechanism with Query-Key-Value (QKV) model. Given the packed 

matrix representations of queries Q ∈ R 𝑁 × , keys K ∈ R 𝑀×𝐷𝑘 , and values V ∈ R 𝑀×𝐷𝑣 , the scaled dot-product 

attention used by Transformer is given by  

Attention(Q, K, V) = softmax (QK⊤ / √ 𝐷𝑘)  V = AV                                (1) 

where 𝑁 and 𝑀 denote the lengths of queries and keys (or values); 𝐷𝑘 and 𝐷𝑣 denote the dimensions of keys (or 

queries) and values; A = softmax (QK⊤ / √ 𝐷𝑘)  is often called attention matrix; softmax is applied in a row-wise 

manner. The dot-products of queries and keys are divided by √ 𝐷𝑘 to alleviate gradient vanishing problem of the 

softmax function. Instead of simply applying a single attention function, Transformer uses multi-head attention, 

where the 𝐷𝑚-dimensional original queries, keys and values are projected into  , 𝐷𝑘 and 𝐷𝑣 dimensions, 

respectively, with 𝐻 different sets of learned projections. For each of the projected queries, keys and values, and 

output is computed with attention according to Equation (1). The model then concatenates all the outputs and 

projects them back to a 𝐷𝑚-dimensional representation.  

MultiHeadAttn(Q, K, V) = Concat(head1, · · · , head𝐻 )W𝑂                          (2) 

where head𝑖 = Attention(QW𝑄𝑖 , KW𝐾𝑖 , VW𝑉𝑖 ). 

 The advancements in attention mechanism can be divided into several categories based on: (1) Sparse 

Attention. This line of work introduces sparsity bias into the attention mechanism, leading to reduced 

complexity. (2) Linearized Attention. This line of work disentangles the attention matrix with kernel feature 

maps. The attention is then computed in reversed order to achieve linear complexity. (3) Prototype and Memory 

Compression. This class of methods reduces the number of queries or key-value memory pairs to reduce the size 

of the attention matrix. (4) Low-rank Self-Attention. This line of work capture the low-rank property of self-

attention. (5) Attention with Prior. The line of research explores supplementing or substituting standard attention 

with prior attention distributions. (6) Improved Multi-Head Mechanism. The line of studies explores different 

alternative multi-head mechanisms. 
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5. CONCLUSION 

 The architecture of Transformer has been demonstrated to be capable of supporting large-scale training 

datasets with enough parameters. Many works show that Transformer has a larger capacity than CNNs and 

RNNs and hence has the ability to handle a huge amount of training data. Most of the existing works improve 

Transformer from different perspectives, such as efficiency, generalization, and applications. The improvements 

include incorporating structural prior, designing lightweight architecture, pre-training, and so on. Although X-

formers have proven their power for various tasks, challenges still exist. 
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