

29 | P a g e

Software Bug Prediction using Machine Learning

M.Chandrika, Hemanth Sai, K.Krishnaveni, K.Sai Harshith

Under the guidance of Mrs. Y. Swathi, Associate Professor,

Department of Computer Science and Engineering, Tirumala Engineering College, Narasaraopet, Andhra Pradesh

ABSTRACT

Software Bug Prediction (SBP) is an important issue in software development and maintenance processes,

which concerns with the overall of software successes. This is because predicting the software faults in earlier

phase improves the software quality, reliability, efficiency and reduces the software cost. However, developing

robust bug prediction model is a challenging task and many techniques have been proposed in the literature.

Supervised ML algorithms have been used to predict future software faults based on historical data.

Keywords—Software bug prediction; Linear Regression, Logistic Regression, Support Vector Classifier and

Random Forests.

INTRODUCTION

The existence of software bugs affects dramatically on software reliability, quality and maintenance cost.

Achieving bug-free software also is hard work, even the software applied carefully because most time there is

hidden bugs. In addition to, developing software bug prediction model which could predict the faulty modules in

the early phase is a real challenge in software engineering.

Software bug prediction is an essential activity in software development. This is because predicting the buggy

modules prior to software deployment achieves the user satisfaction, improves the overall software

performance. Moreover, predicting the software bug early improves software adaptation to different environments

and increases the resource utilization.

Various techniques have been proposed to tackle Software Bug Prediction (SBP) problem. The most known

techniques are Machine Learning (ML) techniques. The ML techniques are used extensively in SBP to predict

the buggy modules based on historical fault data.

With the prediction model, software engineers can effectively allocate the available testing resources on the

defective instances for improving software quality in the early phases of development life cycle.software

can be deployed in the given time, resources and budget.

I. LITERATURE SURVEY

There are many studies about software bug prediction using machine learning techniques. For example, the study

in [2] proposed a linear Auto-Regression (AR) approach to predict the faulty modules. The study predicts the

software future faults depending on the historical data of the software accumulated faults. The study also

evaluated and compared the AR model and with the Known power model (POWM) used Root Mean Square

Error (RMSE) measure. In addition to, the study used three datasets for evaluation and the results were

promising.

30 | P a g e

The studies in [3], [4] analyzed the applicability of various ML methods for fault prediction. Sharma and

Chandra [3] added to their study the most important previous researches about each ML techniques and the

current trends in software bug prediction using machine learning. This study can be used as ground or step to

prepare for future work in software bug prediction.

R. Malhotra in [5] presented a good systematic review for software bug prediction techniques, which using

Machine Learning (ML). The paper included a review of all the studies between the period of 1991 and 2013,

analyzed the ML techniques for software bug prediction models, and assessed their performance, compared

between ML and statistic techniques, compared between different ML techniques and summarized the strength

and the weakness of the ML techniques

In [6], the paper provided a benchmark to allow for common and useful comparison between different bug

prediction approaches. The study presented a comprehensive comparison between a well-known bug prediction

approaches, also introduced new approach and evaluated its performance by building a good comparison with

other approaches using the presented benchmark.

D. L. Gupta and K. Saxena [7] developed a model for object-oriented Software Bug Prediction System (SBPS).

The study combined similar types of defect datasets which are available at Promise Software Engineering

Repository.The study evaluated the proposed model by using the performance.

Rosli et al. [8] presented an application using the genetic algorithm for fault proneness prediction. The

application obtains its values, such as the object-oriented metrics and count metrics values from an open source

software project. The genetic algorithm uses the application's values as inputs to generate rules which employed

to categorize the software modules to defective and non-defective modules. Finally, visualize the outputs using

genetic algorithm applet.

The study in [9] assessed various object-oriented metrics by used machine learning techniques (decision tree and

neural networks) and statistical techniques (logical and linear regression). The results of the study showed that

the Coupling Between Object (CBO) metric is the best metric to predict the bugs in the class and the Line Of

Code (LOC) is fairly well, but the Depth of Inheritance Tree (DIT) and Number Of Children (NOC) are

untrusted metrics.

Singh and Chug [10] discussed five popular ML algorithms used for software defect prediction i.e. Artificial

Neural Networks (ANNs), Particle Swarm Optimization (PSO), Decision Tree (DT), Naïve Bayes (NB) and

Linear Classifiers (LC). The study presented important results including that the ANN has lowest error rate

followed by DT, but the linear classifier is better than other algorithms in term of defect prediction accuracy, the

most popular methods used in software defect prediction are: DT, BL, ANN, SVM, RBL and EA, and the

common metrics used in software defect prediction studies are: Line Of Code (LOC) metrics, object oriented

metrics such as cohesion, coupling and inheritance, also other metrics called hybrid metrics which used both

object oriented and procedural metrics, furthermore the results showed that most software defect prediction

studied used NASA dataset and PROMISE dataset.

31 | P a g e

II. PROPOSED SYSTEM

Four supervised ML algorithms have been used to predict future software faults based on historical data. These

classifiers are Linear Regression, Logistic Regression, Support Vector Classifier and Random Forests. Improve

software quality and productivity. SDP can efficiently progress the effectiveness of software testing and direct

the allocation of resources. To develop quality software, software flaws can be detected and corrected at early

phase of SDLC.

Defect prediction is the method of designing models that are utilized in the initial stages of the process to detect

defective systems such as units or classes. This can be achieved by classifying the modules as defect prone or

not. Different methods are used to identify the classification module,the most common of which is support

vector classifier (SVC), random forest, naive bayes, decision trees (DT), neural networks (NN). The detected

defect prone modules are given high priority in progress testing phases and the non-defect prone modules are

examined as time and cost permits. The feature of classification, known as the relationship between the

attributes and the training dataset class.

III. PROPOSED SOLUTION

We have used the following Algorithms :

1. Base Learners

2. Ensemble Methods

Base Learners

In order to set up an ensemble learning method, we first need to select our base models to beaggregated. Most of

the time (including in the well known bagging and boosting methods) a single base learning algorithm is used so

that we have homogeneous weak learners that are trained in different ways. The ensemble model we obtain is

then said to be “homogeneous”. However, there also exist some methods that use different type of base learning

algorithms: some heterogeneous weak learners are then combined into an “heterogeneous ensembles model”.

This brings us to the question of how to combine these models. We can mention three major kinds of meta-

algorithms that aims at combining weak learners:

bagging, that often considers homogeneous weak learners, learns them independently from each other in

parallel and combines them following some kind of deterministic averaging process

boosting, that often considers homogeneous weak learners, learns them sequentially in a very adaptative way (a

base model depends on the previous ones) and combines them following a deterministic strategy

stacking, that often considers heterogeneous weak learners, learns them in parallel and combines them by

training a meta-model to output a prediction based on the different weak models predictions.

Linear Regression

Linear Regression is a machine learning algorithm based on supervised learning. It performs a regression task.

Regression models a target prediction value based on independent variables. It is mostly used for finding out the

relationship between variables and forecasting.

32 | P a g e

Support Vector Classifer

SVC, or Support Vector Classifier, is a supervised machine learning algorithm typically used for classification

tasks. SVC works by mapping data points to a high- dimensional space and then finding the optimal hyperplane

that divides the data into two classes. The goal of the SVM algorithm is to create the best line or decision

boundary that can segregate n-dimensional space into classes so that we can easily put the new data point in the

correct category in the future. This best decision boundary is called a hyperplane.

SVM chooses the extreme points/vectors that help in creating the hyperplane. These extreme cases are called as

support vectors, and hence algorithm is termed as Support Vector Machine. If the hyperplane classifies the

dataset linearly then the algorithm we call it as SVC and the algorithm that separates the dataset by non-linear

approach then we call it as SVM.

Logistic Regression

Logistic regression is a statistical method used to predict the outcome of a dependent variable based on

previous observations. It's a type of regression analysis and is a commonly used algorithm for solving binary

classification problems.

IV. DATASET

V. OUTPUT

EVALUATING THE PERFORMANCE OF A MACHINE LEARNINGMODEL:

When performing classification predictions, there's four types of outcomes that could occur.

True positives are when you predict an observation belongs to a class and it actually doesbelong to that

class.

True negatives are when you predict an observation does not belong to a class and itactually does not

belong to that class.

False positives occur when you predict an observation belongs to a class when in reality itdoes not.

33 | P a g e

False negatives occur when you predict an observation does not belong to a class when infact it does.

What we desire is TRUE POSITIVE and TRUE NEGATIVE but due to the misclassifications, wemay also

end up in FALSE POSITIVE and FALSE NEGATIVE. This is because no machine learning algorithm is

perfect

These four outcomes are often plotted on a confusion matrix.

A. Confusion Matrix

The confusion matrix is a specific table that is used to measure the performance of ML algorithms. Table V

shows anexample of a generic confusion matrix. Each row of the matrix represents the instances in an actual

class, while each column represents the instance in a predicted class or vice versa. Confusion matrix

summarizes the results of the testing algorithm and provides a report of the number of True Positive (TP), False

Positives (FP), True Negatives (TN), and False Negatives (FN).

B. Accuracy

Accuracy (ACC) is the proportion of true results (both TP and TN) among the total number of examined

instances. The best accuracy is 1, whereas the worst accuracy is 0. ACC can be computed by using the following

formula

ACC = (TP + TN) / (TP + TN+ FP + FN)

C. precision

Precision is calculated as the number of correct positive predictions divided by the total number of positive

predictions. The best precision is 1, whereas the worst is 0 and it can be calculated as:

Precision = TP / (TP + FP)

D. Recall

Recall is calculated as the number of positive predictions divided by the total number of positives. The best

recall is whereas the worst is 0. Generally, Recall is calculated by the following formula:

Recall = TP / (TP + FN)

E. F-measure

F-measure is defined as the weighted harmonic mean of precision and recall. Usually, it is used to combine the

Recall and Precision measures in one measure in order to compare different ML algorithms with each other. F-

measure formula is given by:

F- measure= (2* Recall * Precision)/(Recall + Precision)

F. Accuracy

Accuracy (ACC) is the proportion of true results (both TP and TN) among the total number of examined

instances. The best accuracy is 1, whereas the worst accuracy is 0. ACC can be computedby using the

following formula: Accuracy = correct predictions / all predictions ACC = (TP

+ TN) / (TP + TN+ FP + FN)

MEAN SQUARED ERROR

Mean squared error is simply defined as the average of squared differences between the predicted output and

the true output. Squared error is commonly used because it is agnostic to whether the prediction was too high or

too low, it just reports that the prediction was incorrect.

34 | P a g e

OUTPUT

Defects

Fig: Defects

Volume – Bug

Fig: Volume – Bug

Complexity Evaluation

As a future work, we may involve other ML techniques and provide an extensive comparison among them.

Furthermore, adding more software metrics in the learning process is one possible approach to increase the

accuracy of the prediction model.

Fig: Complexity Evaluation

35 | P a g e

Line of code – Bug

Fig: Line of code - Bug

VI. CONCLUSIONS AND FUTURE WORK

Software bug prediction is a technique in which a prediction model is created in order to predict the future

software faults based on historical data. Various approaches have been proposed using different datasets,

different metrics and different performance measures. This paper evaluated the using of machine learning

algorithms in software bug prediction problem. Three machine learning techniques have been used, which are

NB, DT and ANNs.

REFERENCES

[1] Y. Tohman, K. Tokunaga, S. Nagase, and M. Y., “Structural approach to the estimation of the number of

residual software faults based on the hyper-geometric districution model,” IEEE Trans. on Software

Engineering, pp. 345–355, 1989.

[2] A. Sheta and D. Rine, “Modeling Incremental Faults of Software Testing Process Using AR Models ”, the

Proceeding of 4th International Multi-Conferences on Computer Science and Information Technology

(CSIT 2006), Amman, Jordan. Vol. 3. 2006.

[3] D. Sharma and P. Chandra, "Software Fault Prediction Using Machine- Learning Techniques," Smart

36 | P a g e

Computing and Informatics. Springer, Singapore, 2018. 541-549.

[4] R. Malhotra, "Comparative analysis of statistical and machine learning methods for predicting faulty

modules," Applied Soft Computing 21, (2014): 286-297

[5] Malhotra, Ruchika. "A systematic review of machine learning techniques for software fault prediction."

Applied Soft Computing 27 (2015): 504-518.

[6] D'Ambros, Marco, Michele Lanza, and Romain Robbes. "An extensive comparison of bug prediction

approaches." Mining Software Repositories (MSR), 2010 7th IEEE Working Conference on. IEEE, 2010.

[7] Gupta, Dharmendra Lal, and Kavita Saxena. "Software bug prediction using object-oriented metrics."

Sādhanā (2017): 1-15..

[8] M. M. Rosli, N. H. I. Teo, N. S. M. Yusop and N. S. Moham, "The Design of a Software Fault Prone

Application Using Evolutionary Algorithm," IEEE Conference on Open Systems, 2011.

[9] T. Gyimothy, R. Ferenc and I. Siket, "Empirical Validation of Object- Oriented Metrics on Open Source

Software for Fault Prediction," IEEE Transactions On Software Engineering, 2005.

[10] Singh, Praman Deep, and Anuradha Chug. "Software defect prediction analysis using machine learning

algorithms." 7th International Conference on Cloud Computing, Data Science & Engineering- Confluence,

IEEE, 2017.

[11] M. C. Prasad, L. Florence and A. Arya, "A Study on Software Metrics based Software Defect Prediction

using Data Mining and Machine Learning Techniques," International Journal of Database Theory and

Application, pp. 179-190, 2015.

