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Abstract:  

The Indian day-ahead electricity market operates through power exchanges, such as the Indian Energy Exchange 

(IEX) and Power Exchange India Limited (PXIL), using a double-sided auction mechanism. However, the market 

faces challenges in ensuring smooth operations and effective price determination. This paper discusses the 

complexities and challenges of the Indian day-ahead market and explores the role of machine learning techniques 

in improving price forecasting accuracy. The challenges include market concentration, infrastructure constraints, 

renewable energy integration, incomplete market integration, limited demand response mechanisms, and the need 

for accurate forecasting. To address these challenges, a multi-faceted approach involving policy interventions, 

regulatory reforms, infrastructure investments, and technological advancements is required. Machine learning 

techniques, with their ability to capture non-linear relationships, handle high-dimensional data, adapt to changing 

market dynamics, incorporate multiple data sources, and handle time-series data, offer significant potential for 

enhancing price forecasting accuracy. The paper also discusses various predictive models, including 

autoregressive models, moving average models, ARIMA, seasonal ARIMA, and SARIMAX, along with their 

applications in the Indian electricity market. Additionally, basic ensemble techniques such as weighted averaging, 

max voting, and averaging are introduced as powerful methods to improve prediction accuracy. By addressing the 

challenges and leveraging machine learning techniques, the Indian day-ahead market can achieve robust and 

efficient operations, facilitating efficient electricity trading and delivery. 
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I. INTRODUCTION 

The Indian day-ahead market operates within a structured framework, aiming to ensure efficient electricity trading 

and delivery for the next day. However, it faces several challenges and complexities that need to be addressed for 

smooth operations and effective price determination. In the Indian day-ahead market, electricity is traded through 

power exchanges, primarily the Indian Energy Exchange (IEX) and Power Exchange India Limited (PXIL). The 
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market follows a double-sided auction mechanism, where buyers and sellers submit their bids and offers for 

electricity quantity and price. The market clearing price is determined through the matching of bids and offers, 

establishing a supply-demand equilibrium. In our daily life, we trade different commodities. One of them, but 

different and special is electricity. It is a non-storable and requires equilibrium between demand and supply. India 

is the world’s 6th largest energy market. In India, the gross electricity produced in 2019-2020 was 1383.5 TWh. 

Thermal power plants basically use non-renewable resources such as coal to produce two-third of this total energy. 

The gross electricity consumed in 2019-2020 was 1208 per capita. The electricity supply still not satisfies the 

actual requirement of the country. 

In many countries power exchanges are formed to trade the electricity. Power exchanges are the auction points 

where sellers and buyers can bid to trade electricity for their submitted quantity and price. There are two power 

exchanges functioning in India for power trading named: Power Exchange India Limited (PXIL) and Indian 

Energy Exchange Limited (IEX). The power exchanges allow the power traders to find a good deal and optimal 

buyer and seller for trade. Power exchanges directly controls the energy market such as Day Ahead Market, Term 

Ahead Market, Real Time Market, Green Term Ahead Market, etc. For technical clearance, power exchanges are 

working in co-ordination with Transmission System Operator (TSO). TSO operates and control the transmission 

grids and also clears the amount of energy to be transacted over the grid for an instance of time. 

IEX is a power exchange in India. Under Electricity Act 2003, Central Electricity Regulatory Commission 

(CERC) is a statutory authority which approves and regulates the IEX and its activities by various regulations and 

procedures including Power Market Regulation 2010. 

Now the days, IEX enables traders to trade in following segments: 

 1. Day-ahead market 

 2. Term-ahead market 

 3. Renewable Energy Certificates (REC) 

In day-ahead trading, traders can quote their offers and bid a day ahead of physical delivery. The exchange 

aggregates the offers and bids separately and clears the market on the basis of demand supply equilibrium. The 

intersection point of the demand and supply curve determines the MCP and MCV. This point is called the 

equilibrium point. For a bid to be cleared the bid price should be higher than or equal to MCP and for a offer to 

be cleared, the offer price should be lower than or equal to MCP. The orders can be executed fully or partially as 

per the trader's instructions. 

DAM allows traders to trade next-day (D) energy deliverables in one-day (D-1) advance. In day-ahead market, 

24 hours of the day is divided into 96 time blocks of 15-15 minutes. These 96 time blocks of the delivery day are 

start from the midnight i.e. 00:00-00:15, 00:15-00:30, 00:30-00:45, 00:45-01:00, 01:00-01:15 ... and so on. The 

order (new entry, modification and cancellations) for any, some or all 15 minutes time block of delivery day are 

placed a day before from 10 o'clock morning to 12 o'clock noon everyday irrespective of holiday. For DAM, IEX 
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defined 13 bid areas. After congestion management through market splitting, IEX determine the price for each 

area called Area Clearance Price (ACP). Cleared volume for each area is also determined and termed as Area 

Clearing volume (ACV). 

Accurate forecasting can help the participant to understand future behavior of the energy prices. With an accurate 

price forecast, producer can develop an appropriate strategy to maximize its profit, or a consumer can maximize 

its utilization. Price prediction is a very complex task; several statistical techniques are available for price 

forecasting but accuracy are again questionable. Consequently, the evaluation of energy price forecasting models 

is important step to increase the production and consumption of electricity. Additionally, this ensures a certain 

level of accuracy. A lot of factor affects energy prices as well as wide range of bidding techniques are in practice 

of participants. It’s complicates energy prediction. 

Despite the progress made, the Indian day-ahead market encounters several challenges: 

Market Concentration: The market is characterized by a relatively low number of market participants, leading to 

limited competition. This concentration can influence price formation and hinder the efficient functioning of the 

market. Encouraging more players to participate in the market can foster competition and enhance market 

liquidity. 

Infrastructure Constraints: Inadequate transmission infrastructure and grid congestion pose significant challenges 

for the Indian day-ahead market. Transmission bottlenecks restrict the optimal utilization of generation resources 

and result in higher costs. Investments in grid infrastructure and expansion are necessary to address these 

constraints and facilitate efficient electricity trading across regions. 

Variable Renewable Energy Integration: The increasing penetration of variable renewable energy sources, such 

as solar and wind, presents challenges in the day-ahead market. The intermittent nature of renewable generation 

makes it difficult to accurately forecast and schedule their availability, leading to potential imbalances between 

supply and demand. Integrating advanced forecasting techniques and implementing flexible market mechanisms 

can help manage the variability and uncertainty associated with renewable energy integration. 

Incomplete Market Integration: The Indian electricity market consists of multiple regional markets that operate 

with varying rules and regulations. The lack of harmonization and coordination between these regional markets 

limits the ability to optimize resource allocation and trade electricity seamlessly across regions. Establishing a 

more unified and integrated market structure can unlock significant benefits in terms of market efficiency and 

price discovery. 

Demand Response and Demand-Side Management: The Indian day-ahead market has limited mechanisms for 

demand response and demand-side management. Encouraging consumers to actively participate by adjusting their 

electricity consumption patterns in response to price signals can enhance market efficiency and facilitate better 

demand-supply matching. The development of demand response programs and incentives can promote consumer 

engagement and support grid stability. 



 
 

85 | P a g e  
 

Forecasting Accuracy: Accurate load forecasting and price forecasting are crucial for the effective functioning of 

the day-ahead market. However, accurate forecasting becomes challenging due to the inherent uncertainties 

associated with factors such as weather conditions, consumer behavior, and policy changes. Developing more 

accurate forecasting models, leveraging advanced data analytics techniques, and incorporating real-time data can 

help improve forecasting accuracy and enable efficient market operations. 

Addressing these challenges requires a multi-faceted approach involving policy interventions, regulatory reforms, 

infrastructure investments, and technological advancements. Enhancing market transparency, promoting 

competition, fostering regional market integration, and incentivizing demand response initiatives are essential for 

ensuring a robust and efficient day-ahead market in India. 

II. MACHINE LEARNING FOR EPF 

Machine learning techniques play a crucial role in capturing the complexities of the Indian electricity market and 

improving price forecasting accuracy. The Indian electricity market is characterized by dynamic and non-linear 

relationships between various factors, such as demand, supply, fuel prices, weather conditions, and government 

policies. Machine learning algorithms have the capability to analyze large volumes of data, identify intricate 

patterns, and adapt to changing market dynamics, making them well-suited for addressing the challenges of price 

forecasting in this context. Here are the key reasons why machine learning techniques are important in capturing 

the complexities of the Indian electricity market and enhancing price forecasting accuracy: 

Non-linear Relationships: Traditional statistical models often assume linear relationships, which may not 

adequately capture the non-linear dynamics present in the electricity market. Machine learning algorithms, such 

as support vector machines (SVM), random forests, and neural networks, have the ability to model and learn 

complex non-linear relationships between input variables and price outcomes. They can capture intricate patterns 

and correlations that traditional models may overlook, leading to more accurate price forecasts. 

Handling High-Dimensional Data: The Indian electricity market involves a wide range of variables that influence 

price outcomes, including historical price data, demand patterns, weather conditions, fuel prices, renewable energy 

generation, and economic indicators. Machine learning techniques can handle high-dimensional data effectively 

and extract relevant features to improve forecasting accuracy. Dimensionality reduction methods, such as 

principal component analysis (PCA) or feature selection algorithms, can help identify the most influential 

variables for price prediction. 

Adaptability to Changing Market Dynamics: The Indian electricity market is subject to various uncertainties, such 

as changes in policy, fuel availability, or weather patterns. Machine learning models can adapt to these changes 

by continuously learning and updating their predictions based on new data. They can capture short-term and long-

term trends, identify seasonality, and adjust their forecasts in response to evolving market conditions, enabling 

more accurate price predictions. 

Incorporating Multiple Data Sources: Machine learning techniques allow for the integration of diverse data 

sources, including historical price data, weather data, economic indicators, and market fundamentals. By 
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incorporating these multiple data sources, machine learning models can capture the interdependencies and 

interactions among different factors influencing electricity prices in the Indian market. This holistic approach 

enhances the accuracy of price forecasting by considering a broader range of variables. 

Handling Time-Series Data: Price forecasting in the Indian electricity market involves analyzing time-series data, 

where past prices are indicative of future behavior. Machine learning algorithms, such as autoregressive integrated 

moving average (ARIMA), recurrent neural networks (RNNs), and long short-term memory (LSTM) networks, 

are specifically designed to handle time-series data. These algorithms can capture temporal dependencies, 

seasonality, and trends in price data, enabling more accurate predictions for future price movements. 

Improved Forecasting Performance: Machine learning techniques have demonstrated superior performance 

compared to traditional statistical models in electricity price forecasting. They have been shown to provide higher 

prediction accuracy, better capture extreme events, and exhibit robustness in the face of changing market 

conditions. By leveraging advanced algorithms and learning from historical data, machine learning models can 

generate more precise and reliable price forecasts in the Indian electricity market. 

PREDICTIVE MODELS 

Autoregressive Model (AR) 

In an auto regression model, we forecast the variable of interest using a linear combination of past values of the 

variable. The term auto regression indicates that it is a regression of the variable against itself. Thus, an 

autoregressive model of order  𝑝  can be written as 

𝑦𝑡 = 𝑐 + ϕ1𝑦𝑡−1 + ϕ2𝑦𝑡−2 + ⋯ + ϕ𝑝𝑦𝑡−𝑝 + ε𝑡 

where ε𝑡 is white noise. This is like a multiple regression but with lagged values of 𝑦𝑡 as predictors. We refer to 

this as an AR (𝑝) model, an autoregressive model of order p. Autoregressive models are remarkably flexible at 

handling a wide range of different time series patterns. Changing the parameters ϕ1… ϕ𝑝results in different time 

series patterns. The variance of the error term ε𝑡 will only change the scale of the series, not the patterns.  

Moving Average Models (MR) 

Rather than using past values of the forecast variable in a regression, a moving average model uses past forecast 

errors in a regression-like model. 

𝑦𝑡 = 𝑐 + ε𝑡 + θ1ε𝑡−1 + θ2ε𝑡−2 + ⋯ + θ𝑞ε𝑞−1, 

where ε𝑡 is white noise. We refer to this as an MA (q) model, a moving average model of order q. Of course, we 

do not observe the values of ε𝑡, so it is not really a regression in the usual sense. Notice that each value of y_t can 

be thought of as a weighted moving average of the past few forecast errors. However, moving average models 

should not be confused with the moving average smoothing. A moving average model is used for forecasting 

future values, while moving average smoothing is used for estimating the trend-cycle of past values. 
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ARIMA 

If we combine differencing with auto regression and a moving average model, we obtain a non-seasonal ARIMA 

model. ARIMA is an acronym for Autoregressive Integrated Moving Average (in this context, “integration” is the 

reverse of differencing). The full model can be written as 

y′t=c+ϕ1y′t−1+⋯+ϕpy′t−p+θ1εt−1+⋯+θqεt−q+εt, 

𝑦𝑡
′ = 𝑐 + ε𝑡 + ϕ1𝑦𝑡−1

′ + ⋯ + ϕ𝑝𝑦𝑡−𝑝
′ + θ1ε𝑡−1 + ⋯ + θ𝑞ε𝑡−𝑞, 

where 𝑦𝑡
′ is the differenced series (it may have been differenced more than once). The “predictors” on the right 

hand side include both lagged values of 𝑦𝑡  and lagged errors. We call this an ARIMA (p,d,q) model, where 

𝑝 = order of the autoregressive part; 

𝑑 = degree of first differencing involved; 

𝑞 = order of the moving average part. 

The same stationarity and inevitability conditions that are used for autoregressive and moving average models 

also apply to an ARIMA model 

SARIMA 

A seasonal ARIMA model is formed by including additional seasonal terms in the ARIMA models we have seen 

so far. It is written as follows: 

SARIMA (𝑝, 𝑑, 𝑞) (𝑃, 𝐷, 𝑄)𝑚 

 ↑↑ ↑↑ 

 
Non-seasonal part of the 

model 
Seasonal part of the model 

where m= number of observations per year. We use uppercase notation for the seasonal parts of the model, and 

lowercase notation for the non-seasonal parts of the model. 

The seasonal part of the model consists of terms that are similar to the non-seasonal components of the model, but 

involve backshifts of the seasonal period. For example, an SARIMA (1,1,1)(1,1,1)4 model (without a constant) is 

for quarterly data (m=4), and can be written as 

(1 − 𝜙1𝐵) (1 − 𝛷1𝐵4)(1 − 𝐵)(1 − 𝐵4)𝑦𝑡 = (1 + 𝜃1𝐵) (1 + 𝛩1𝐵4)𝜀𝑡 

The additional seasonal terms are simply multiplied by the non-seasonal terms. 

SARIMAX 

SARIMAX (Seasonal Autoregressive Integrated Moving Average with Exogenous Variables) is an extension of 

the SARIMA model that incorporates exogenous variables to improve time series forecasting. SARIMAX 

combines the autoregressive, integrated, and moving average components of SARIMA with the inclusion of 

external predictors. These exogenous variables capture additional information that may influence the time series, 

such as economic indicators, weather data, or demographic factors. By including these variables, SARIMAX can 

account for their impact on the time series and provide more accurate and robust predictions. SARIMAX is widely 
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used in various fields, including finance, economics, and demand forecasting, where exogenous factors play a 

significant role in influencing the time series behavior. 

ENSEMBLE METHODS (EMs) 

I. BASIC ENSEMBLE TECHNIQUES 

In this section, we discuss 3 basic but powerful ensemble methods, namely: 

o Weighted averaging (WA) 

o Max voting (MV) 

o Averaging. 

Max voting (MV) 

The primary application of MV is for a classification task. In the MV technique, several 

single classifier models are employed to decide on every data-point. The output of every individual or single 

classifier is taken as a ‘vote’, the final output (decision) is based on the majority’s answer. Let 𝑀1, 𝑀2 and 𝑀3 

represent single different classifier models, and 𝑥𝑡𝑟𝑎𝑖𝑛 and 𝑦𝑡𝑟𝑎𝑖𝑛 be training datasets, independent and dependent 

variables respectively. While 𝑥𝑡𝑒𝑠𝑡  and 𝑦𝑡𝑒𝑠𝑡 be independent variables and target variables of the testing dataset, 

respectively. Let 𝑀1, 𝑀2 and 𝑀3 be trained separately with the same training dataset, thus, 𝑀1.fit(𝑥𝑡𝑟𝑎𝑖𝑛 and 

𝑦𝑡𝑟𝑎𝑖𝑛), 𝑀2.fit(𝑥𝑡𝑟𝑎𝑖𝑛 and 𝑦𝑡𝑟𝑎𝑖𝑛) and 𝑀3.fit(𝑥𝑡𝑟𝑎𝑖𝑛 and 𝑦𝑡𝑟𝑎𝑖𝑛), respectively. Let 𝑦𝑀1
,  𝑦𝑀2

 and 𝑦𝑀3
, represent the 

predicted output of the respective models. Then, the final prediction ( 𝐹𝑝) is a simple majority vote among the 

predicted output. 

Averaging 

The averaging technique is very similar to the MV technique; however, an average of the 

outputs of all individual or single classifiers represents the final output (decision). However, unlike the MV, the 

averaging technique can be used for both regression and classification machine learning task. With models {𝑀1, 

𝑀2 and 𝑀3} separately trained and tested with the same dataset, final prediction ( 𝐹𝑝)) is the average of individual 

models.  

𝐹𝑃 = ∑
𝑦𝑖

𝑛

𝑛

𝑖=1

 

where 𝑦1, 𝑦2, . . . , 𝑦 𝑛 are the predicted output of individual models.  

Weighted average (WA) 

The WA is an extension of the averaging techniques. In WA technique, different weights are assigned to every 

model signifying the prominence of an individual model for prediction. However, with WA, 𝑀1, 𝑀2 and 𝑀3 are 

assigned with different weights of say (0.5, 0.2 and 0.7) respectively, then, the final prediction (𝐹𝑃). 

𝐹𝑃 = (0.5 × 𝑦1)+ (0.2 × 𝑦2)+, . . . , + (0.7 × 𝑦 𝑛) 

II. ADVANCED EL TECHNIQUES 

The following section discusses three advanced combination techniques in brief. 
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Stacking (STK) 

Stacking is an EL technique that makes use of predictions from several models  (m1, m2, . . . , mn) to construct a 

new model, where the new model is employed for making predictions on the test dataset. STK seeks to increase 

the predictive power of a classifier. The basic idea of STK is to “stack” the predictions of (m1, m2, . . . , mn) by a 

linear combination of weights aj, . . . , (i = 1, . . . , n). 

𝑓𝑆𝑇𝐾(𝑥) = ∑ 𝑎𝑖𝑓𝑖𝑥

𝑛

𝑖=1

 

where the weight vector “a” is learned by a meta-learner. 

Blending (BLD) 

The blending ensemble approach is like stacking technique. The only difference is that, while stacking uses test 

dataset for prediction blending uses a holdout (validation) dataset from the training dataset to make predictions. 

That is predictions take place on only the validation dataset from the training dataset. The outcome of the predicted 

dataset and validation dataset is used for building the final model for predictions on the test dataset. 

Bagging (BAG) 

Bagging also called bootstrap aggregating involves combining the outcome of several models (for instance, N 

number of K-NNs) to acquire a generalized outcome. Bagging employs bootstrapping-sampling techniques to 

create numerous subsets (bags) of the original train dataset with replacement. The bags created by the bagging 

techniques severs as an avenue for the bagging technique to obtain a non-discriminatory idea of the sharing 

(complete set). The bags’ sizes are lesser than the original dataset. Some machine learning algorithms that use the 

bagging techniques are bagging meta estimator and random forest. BAG seeks to decrease the variance of models. 

Boosting (BOT) 

Boosting also called “meta-algorithm” is a chronological or sequential process, where each successive model tries 

to remedy or correct the errors of the preceding model. Here, every successive model depends on the preceding 

model. A BOT algorithm seeks to decrease the model’s bias. Hence, the boosting techniques lump together several 

weak-learners to form a strong leaner. However, the single models might not achieve better accuracy of the entire 

dataset; they perform well for some fragment of the dataset. Therefore, each of the single models substantially 

improves (boosts) the performance of the ensemble. Some commonly boosting algorithms are AdaBoost, GBM, 

XGBM, Light GBM and CatBoost. 

IV. CONCLUSION 

In conclusion, the Indian day-ahead market operates through power exchanges, such as the Indian Energy 

Exchange (IEX) and Power Exchange India Limited (PXIL), using a double-sided auction mechanism. However, 

the market faces various challenges that hinder its efficiency and price determination. These challenges include 

market concentration, infrastructure constraints, variable renewable energy integration, incomplete market 

integration, limited demand response and demand-side management mechanisms, and forecasting accuracy. To 
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address these challenges, a multi-faceted approach is required involving policy interventions, regulatory reforms, 

infrastructure investments, and technological advancements. This paper has explored the application of machine 

learning techniques in electricity price prediction and analyzed the current state of the field. Through an extensive 

examination of literature and research studies, several key findings have emerged. Firstly, it is evident that 

machine learning algorithms offer significant potential in accurately forecasting electricity prices. Machine 

learning techniques play a crucial role in capturing the complexities of the Indian electricity market and improving 

price forecasting accuracy. Traditional statistical models may not adequately capture the non-linear relationships 

and high-dimensional nature of the market. Machine learning algorithms, such as support vector machines (SVM), 

random forests, and neural networks, can handle non-linear relationships, high-dimensional data, and adapt to 

changing market dynamics. They can also incorporate multiple data sources, handle time-series data, and provide 

improved forecasting performance compared to traditional models. Some of the predictive models used in the 

Indian day-ahead market include autoregressive models (AR), moving average models (MA), autoregressive 

integrated moving average models (ARIMA), seasonal ARIMA models (SARIMA), and SARIMAX models 

(seasonal ARIMA with exogenous variables). These models capture different aspects of the market dynamics and 

help in generating accurate price forecasts. Ensemble methods, such as weighted averaging, max voting, and 

averaging, are also employed in the Indian day-ahead market. These methods combine the predictions of multiple 

individual models to improve the overall forecasting performance and enhance decision-making. These models 

leverage historical price data, weather information, economic indicators, and other relevant factors to capture the 

complex dynamics of electricity price fluctuations. Secondly, the feature selection process plays a crucial role in 

improving the performance of electricity price prediction models. Effective feature selection techniques, such as 

correlation analysis, recursive feature elimination, and principal component analysis, help identify the most 

influential variables and reduce dimensionality, leading to more accurate and efficient predictions. Furthermore, 

the integration of external factors, such as renewable energy generation, demand-side management, and policy 

changes, has been shown to enhance the predictive capabilities of machine learning models. Incorporating these 

factors provides a more comprehensive understanding of the electricity market dynamics and improves the 

accuracy of price forecasts. However, challenges remain in the field of electricity price prediction using machine 

learning. The limited availability of high-quality and up-to-date data, data preprocessing issues, and model 

interpretability concerns are some of the hurdles that researchers and practitioners need to address. Furthermore, 

the dynamic nature of electricity markets necessitates continuous model adaptation and retraining to maintain 

accuracy over time. In conclusion, machine learning techniques have demonstrated great potential in accurately 

predicting electricity prices. Continued research and advancements in data availability, feature selection methods, 

and model interpretability will contribute to further improvements in the accuracy and applicability of electricity 

price prediction models. As these models continue to evolve, they hold the promise of enabling more informed 

decision-making, risk management, and efficient utilization of electricity resources in various sectors, such as 

energy trading, renewable energy integration, and demand response programs. 
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