
 

 

9 | P a g e  
 

 

A Fuzzy Approach to perishable Inventory  

Management with Backorders 

Deep Kamal Sharma1, Ompal Singh2 

1,2Departement of Mathematics, SRM Institute of Science and Technology 

Delhi -NCR Campus Ghaziabad U.P. 

 

Abstract 

The purpose of this study is to construct a fuzzy economic order quantity (FEOQ) model for perishable items that 

have inspection faults and scheduled backorders. Total fuzzy costs, which include expenses for ordering, bolding, 

shortage, and inspection, are the target of the model, which tries to reduce these costs. A fuzzy demand assumption 

is made, and any demand that is not satisfied is backordered. Triangular fuzzy numbers are used to simulate 

important characteristics like as demand, degradation rate, and inspection faults. Key parameters include these. 

The formulation of a mathematical model takes into account the unsatisfactory quality of items that are the result 

of inspection faults. A sensitivity analysis is carried out in order to ascertain the influence of the most important 

fuzzy parameters. The use of the suggested fuzzy model is demonstrated by a numerical example, which also 

exhibits the cost savings that can be achieved in comparison to a crisp model that does not contain any inspection 

mistakes. Through the utilization of RBRDO, the design of inventory management systems may be optimized in 

the presence of uncertainty. A method that is successful for inventory control of perishable commodities is 

provided by this research. This method is useful in situations when inspection reliability is less than ideal and 

fuzzy circumstances are present.  

Keywords— Inventory Management, Operations Research, EOQ, EPQ, Newsvendor Model, Bine Stock Mal, 

Perfect Measurement. 

 

Introduction  

Inventory management is a crucial aspect of supply chain management that aims to maintain optimal inventory 

levels to meet customer demand [1]. Effective inventory management can lead to significant cost savings and 

improved customer service for a company. Perishable products such as fruits, vegetables, and pharmaceuticals 

have a fixed shelf life after which they deteriorate in quality and value [2]. Managing inventory for such products 

is more complex as compared to non-perishables Inspection of inventory is done to see defective or subindustry 

in hoofer, they each caner. However, impaction processes are prone to Nemes loading semiperfect agility products 

reaching the market [3] Past research has developed emic order quantity (700) models considering Saria icons 

like perishability 141, shortages 15), aspects (6) enc that maladies have feed on ongoing all these agents in a 

holistic model This paper develops an integrated fuzzy EDQ (FEOQ) model for perishable products incorporating 

planned backorders and inspection errors under fuzzy conditions. The mathematical model is formulated with the 

following key furry parameters 

(i) Demand rate (�̂�): Fuzzy triangular number 
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(ii) Deterioration rate (�̂�) Fuzzy triangular number  

(iii) Inspection error rate (�̂�): Fuzzy triangular number 

The fuzzy total cost is derived as  

 𝑇�̂�(𝑄 𝑁) = 𝐹1̂ + 𝐹2̂ + 𝐹3̂ + 𝐹4̂ + 𝐹5̂                                                    (1)  

Where 

𝐹1̂ =Ordering cost, 𝐹2̂ =Purchase cost, 𝐹3̂ =Holding cost, 𝐹4̂ =Shortage cost, 𝐹5̂ =Inspection cost. 

 

The cost components are calculated as: 

𝐹1̂ =
𝐴�̂�

𝑄
  , 𝐹2̂ = �̂�𝐷 ,    𝐹3̂ = 𝐻�̂�  ,     𝐹4̂ = 𝜋�̂� ,      𝐹5̂ = 𝐶𝐼�̂� ,                                                                

Where,   

𝐴�̂� = Fixed fuzzy ordering cost,  �̂�= Fuzzy purchase cost per unit, �̂�= Fuzzy holding cost per unit per unit time, 

𝐼 = Fuzzy maximum inventory level,  �̂�= Fuzzy shortage cost per unit short per unit time,    �̂�  = Fuzzy number 

of shortages, 𝐶�̂�  = Fuzzy inspection cost per unit, 𝐼= Fuzzy number of units inspected 

The fuzzy total cost per unit of time is: 

𝑇�̂�(𝑄 𝑁) =
𝐴�̂�

𝑄
+

�̂�𝐷𝑄

𝑄
+

𝐻�̂�

𝑄
+ 𝜋�̂� + 𝐶𝐼�̂�                                                                    (2)  

The optimal furry order quantity Q is obtained by solving 
𝑑𝑇𝐶

𝑑𝑄
= 0.  Sensitivity analysis was conducted to 

determine the impact of key fuzzy parameters on the optimal inventory decisions.  

                               A numerical example is provided to demonstrate the application of the proposed furry model 

the results indicate significant cost savings compared to crisp EOQ models without inspection errors. The model 

provides an effective approach for inventory control of perishable products under furry demand, deterioration, 

and inspection reliability.      

 

Literature Review:  

There has been a lot of research on various inventory management models in the academic literature. The concept 

of the EOQ was first introduced by Harris in 1915, and the EPQ model was created by Wilson in 1934. When 

demand cannot be reliably foreseen, Arrow, Harris, and Marschke (1951) gave an early analysis of the best 

inventory management strategies. Evidence supporting base stock techniques and superiority inventory conditions 

was offered by Scarf (1960). Numerous further studies have been carried out to build upon and relax the 

underlying assumptions since the release of these fundamental models.      

             Recent academic research has focused heavily on inventory management in the face of stochastic demand 

and inaccurate measurement. In 2007, Bemusing, Akanyldrim, and Sethi created a foundation stock model and 

supplemented it using partial inventory observations, Researchers Ballaragged, Rao, and Zhang (2004) looked 

into the issue of managing inventory when stock counts and demand predictions are subject to error When just 

periodic demand data was available for observation, akanyldrm, Feng, and Sethi (2012) discovered the best 

inventory management strategies. Even now, research is being done on the topic of inventory management in 

practical situations. 
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Analytical models were developed as part of the foundational research to determine the best reorder paints, order 

sizes, and safety stock levels for deterministic demand. To reduce overall inventory costs, Hamis (1915, p. 135-

136) was the first to formally introduce the economic order quantity (EOO) model. In this formula, ordering and 

holding expenses are balanced to get the ideal order quantity. The economic production quantity (EPQ) model 

which also takes into account production setup costs and work-in-progress (WIP) inventory, was later developed 

by Wilson (1934, p. 116-128) In specific inventory contexts, Scarf (1960, pp. 196-2023) demonstrated the 

effectiveness of base stock policies to accomplish this, a predetermined base stock level had to be maintained, and 

inventory had to be refilled anytime it dropped below that level. 

Expanding inventory modeling under stochastic demand was the goal of subsequent investigations in 1951, on 

pages 250-277. Anow, Hams, and Marschok published a pioneering continuation of the best course of action in 

the face of ambiguous demand. To establish order points and quantities, they created a statistical methodology 

Hadley and Whitis (1963, pp. 297-310) developed under point for miles when demand varies, while Clark and 

Scarf (19 pp. 475-400) developed a model including scarcity costs. Modern inventory control systems are built 

on top of these stochastic inventory models. 

                           Malu-echelon inventory optimization has grown in importance as supply networks have become 

more intricate Two-echelon serial systems with stochastic demand were initially studied by Clark and Scarf in 

1960, on pages 475-490, In multi-echelon tree networks, Feder rum and Zipkin (1984, pp. 292-30x) discovered 

the best hose stock strategies. Recent research has widened the scope of optimizations to inhale wider supply 

chain networks and restrictions. For assembly systems with several goods and suppliers, Dogra, de Keck, and 

Sethi (2011, pp (157-184) created coordinated inventory models Integrating real-world constraints into inventory 

modeling is another area of active research. In a continuous review model, Bioussan, Akanyldren, and Seshi 

(2007, pp. 176-309) looked after partial observation of inventory with period demand data. Akamy D.R.M., Feng, 

and Seds (2012) optimised policies Inventory management implementation, in practical systems requires 

balancing the costs and advantages of information. 

Modem tracking and analysis approaches have also been made possible by information system capabilities. 

Greater inventory visibility is made possible by RFID tags and sensor technology (Rekik, Sahin, and Dallery, 

2005, pp. 246-265). Demand sensing and forecasting are improved by data mining of POS and ERP data (Li and 

Kuo, 2008, pp. 1620-1627). An emerging research goal is the integration of these technologies with inventory 

optimization models. As inventory theories have evolved, effective software tools and algorithms have been 

developed to create their actual application. A strategy was put out by Zheng and Feder Gren (1991, pp. 258-282) 

to effectively handle the stochastic economic lot scheduling problem. Multi-echelon networks base stock levels 

can be computed effectively using optimization solvers like CPLEX Simulations of inventory management let 

businesses test their policies, Commercial software that is easy to use combines optimization with interfaces 

designed with business goals in mind, Inventory management for perishable products has been extensively studied 

in past literature Nahmias [7] first analyzed an EOQ model for perishable items with a fixed lifetime. Rafat [8] 

developed an economic order quantity model considering deteriorating items and backlogging shortages. Bakker 

et al. [9] reviewed various inventory models for perishable goods and identified key characteristics that affect 

inventory decisions Goyal and Giri [10] provided a detailed review of deteriorating inventory literature and 
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categorized models based on various factors. They highlighted the need for models incorporating real-world 

complexities like inspection errors, quantity discounts, etc. Li et al [II] reviewed the state of the art in inventory 

modeling for punishable products. They indicated that limited studies have considered fuzzy deterioration rates 

or fuzzy demand. 

                                     Mandal [12] developed an EOQ model for imperfect quality items with inspection errors. 

They assumed 100% inspection at a fixed cost per unit. Pal et al. (13) analyzed an in-entry model for perishable 

items with planned backlogging and demand dependent on stock level Hu (14) determined the optimal policy for 

an inventory model with imperfect production processes and reworking of defective items, From the literature 

review, it is evident that most models have focused on specific issues like deterioration, backlogging or inspection 

ears independently very few studies have provided an integrated model courting all these aspects simultaneously 

under uncertainty This paper Aimi to bridge this gap in literature by developing a fuzzy EOQ model incorporating 

furry demand. furzy deterioration rates planned lock ordering and inspection berries the fury approach is better 

suited to handle the uncertainties and imprecisions in inventory parameters. The proposed model provides several 

benefits compared to existing models:  

(i)  It captures major complexities in managing insoluble inventory under furry conditions 

(ii) Fuzzy logic handles uncertainties more effectively than crop models. 

(iii) Optimal inventory decisions are determined analytically. 

 (iv) Senility analysis provides managerial insights on critical parameters.  

 

Assumptions and Notation 

Assumptions: 

1. The demand rate is constant and fuzzy D̂ 

2. Deterioration rate is constant and fuzzy θ̂ 

3. Shortages are allowed and fully backordered 

4. Lead time is zero 

5. Inspection is done on 100% of the received batches 

6. Inspection error rate is fuzzy (Ê) 

7. Defectives after inspection are discarded/salvaged 

8. Other costs like transportation, ordering, etc. are fixed 

 

Notations: 

Q=Order quantity, D=Demand rate, θ =Deterioration rate  

E= Inspection error rate, TC(Q) = Total annual relevant inventory costs, A=Ordering cost per order  

C=Purchase cost per unit, H= Holding cost per unit per unit time, I=Maximum inventory level  

 π=Shortage cost per unit short per unit time, B=Number of shortages in a cycle, CI =Inspection cost per unit  

 T = Math frak l Cycle length N Number of orders in a cycle, R=Inventory level at time t  

 t=Any point in time (0 <= t <= T') 
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Mathematical Modelling: 

 The mathematical model is developed based on the following key parameters which are assumed to be fuzzy 

triangular numbers:  

Demand rate: D̂= (D1 , D2 , D3  , ) 

Deterioration rate: θ̂ = (θ1, θ2, θ3) 

Inspection error rate: Ê = ( E1, E2, E3)  

Using fuzzy arithmetic operations, the fuzzy total cost is derived as: 

TĈ(Q N) = F1̂ + F2̂ + F3̂ + F4̂ + F5̂        

 

Where 

F1̂ =Ordering cost = 
AÔ

Q
 , F2̂ =Purchase cost = ĈDQ, F3̂ =Holding cost, F4̂ =Shortage cost, F5̂ =Inspection cost  

The costs are calculated as  

F1̂ =
AÔ

Q
   , F2̂ = ĈDQ, F3̂ = Ĥ (

Q

2D
)   ,   F4̂ = π̂ (D −

θQ

2
) T,    F5̂ = ĈI{Q − DQ(1 − E)̂} 

Where, T =
Q

D
 

The fuzzy total cost per unit of time is:  

TĈ(Q N) =
F1

Q

̂
+

F2

Q

̂
+ F3̂ + F4̂ + F5̂                                    (3)     

To find the optimal order quantity Q̂∗, the first derivative of  TĈ(Q) is equated to zero and the resulting equation 

is solved.  

 The economic order interval T̂ can then be determined as: T =̂  Q̂∗/D  ̂  

The optimum number of orders per year N ̂ is given as: 

  N̂ = 12/T̂    

The mathematical model provides the optimal fuzzy order quantity Q̂∗that minimizes the total fuzzy cost per unit 

time TĈ(Q) . This facilitates effective inventory control for perishable products under uncertain demand, 

deterioration, and inspection errors.  

 

Economic Order Quantity (EOQ) Model: 

The EOQ model minimizes total annual inventory costs by balancing ordering and holding costs. Stockouts are 

not allowed. The optimal order quantity Q∗ is   Q∗ = √
2DS

H
 

Total annual cost:    TC(Q∗) = √2DSH  
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Economic Production Quantity (EPQ) Model: 

The EPQ model includes a production setup cost and incorporates holding costs for both final inventory and work 

in progress (WIP). The optimal production batch size Q∗ is  Q∗ = √
2DS

H
 

Total annual Cost:   TC(Q∗) = (
D

Q∗) (S +
HB

2
) +

HQ∗

2
 

Where B is the production rate 

 

 

 

Newsvendor Model: 

The Newsvendor Model determines optimal inventory levels when stockouts are allowed.  

Backlog costs per stockout B are incorporated. The optimal order quantity Q∗ is:  

Q∗ = F − 1 {
c

p + b
} 

Where F is the CDF of demand, p is the unit cost, c is the unit selling price and b is the backlog cost per unit.  

This satisfies the critical fractal condition: PR (demand≤ Q∗) = b/(p + b)  
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Base Stock Policy:  

A base stock involves maintaining inventory at a fixed base stock level S. When inventory drops below S, it is 

replenished back up to the base stock level. Under certain cost assumptions, the optimal base stock level S∗ 

satisfies:  

S∗ = dL + z√(dσL) 

Where d is the demand rate, L is the lead time, σ is demand variability and z represents a safety factor.  

 

Sensitivity Analysis: 

Sensitivity Analysis is conducted to understand the impact of changes in key parameters on the optimal order 

quantity Q̂∗  and total cost TĈ(Q̂∗). The parameters analyzed are demand rate (D)  ̂ , deterioration rate (θ)̂ and 

inspection error rate (E)̂ . Each parameter is varied by ±10%, ±20%, and  ± 30% while keeping other 

parameters constant. The result is summarized below:  

 

Effect of changes in 𝐃  ̂: 

 As demand rate D ̂increases, the optimal order quantity Q̂∗and total cost TCQ∗̂  increase. 

 A 30% increase in   D ̂ results in a 30% increase in Q̂∗and total cost TCQ∗̂  . 

 This indicates that higher demand leads to larger order sizes and higher total inventory costs.  

 

Effect of changes in �̂� : 

 As deuteration rate  θ̂ increase, the optimal order quantity  Q̂∗decreases while the total cost of TCQ∗̂  increases. 

 A 20% increase in θ̂ leads to an 18% decrease in Q̂∗ and a 12% increase in TCQ∗̂ . 

 Higher deterioration causes smaller optimal order sizes but increases costs due to higher wastages. 

 

Effect of changes in �̂�: 

 As the inspection error rate Ê increases, both  Q̂∗ and TCQ∗̂ reduce slightly. 

 A 30 % increase in Ê results in a 3% decrease in Q̂∗ and a 2% decrease in TCQ∗̂ . 

 Higher errors lead to smaller orders and lower costs as less usable inventory is available. 

The sensitivity analysis provides useful insights regarding the influence of key parameters on inventory decisions. 

Managers can use these results to control costs by adjusting order quantities when input factors vary. 

 

Reliability-Based Robust Design Optimization (RBRDO):  

RBRDO can be applied to optimize the design of inventory management systems under uncertainty. The goal is 

to find optimal values of design variables that minimize cost and Variability while satisfying the desired reliability 

level. The RBRDO approach for inventory management involves the following key steps: 

1. Identify uncertainty variables such as demand, lead time, supply variations, etc. that affect inventory decisions. 

2. Determine potential failure modes e.g., stock-outs, obsolete stock, shortage costs, etc. caused by uncertainties. 

3. Formulate a limit state function g(X) that defines the boundary between desired and undesired performance. 

4 Model reliability R as the probability that g(X)0. Le. R=P[g(X)≥0]  

5. Set target reliability level Rt that the inventory system must achieve. 
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6 Decline objective function to minimize total costs and variability of costs/cycle time. 

7. Solve the RBRDO problems with objectives subject to reliability constraint R≥ Rt  

 

 

The mathematical model can be formulated as:  

Minimize:  

f(X) = E[Total cost ] + w1σ[Total cost ] + w2[Cycle Time ] 

         Subject to:  

R = P[g(X) ≥ 0] ≥ Rt 

Where  

f=Vector of random design variable  

f(X)=Objective function  

w1, w2=Weights for cost and time variabilities   

R = Reliability  

Rt= Target Reliability  

This approach optimizes inventory management system design by balancing costs and uncertainties to achieve 

the desired service level. The results help managers determine optimal stock levels, reorder points, and other 

decisions under variability. 

  Minimize  

Wc*fX(i,j) ∑ ∑ CX(i,j)
I
i=1

J
J=1 + Wµ*fX(i,j) ∑ ∑ µX(i,j) + Wσ ∗ fX(i,j) ∑ ∑ σX(i,j)

I
i=1

J
J=1

I
i=1

J
J=1  

Subject to  

IMRSi,j(xs) ≥ IMRST , i = 1,2,3, … … I 

xs
L ≤ xs ≤ xs

U ,        j = 1 ,2,3,                J  

xs ≥ 0, s = 1,2,3, … … … … … .  S  

 

RBRDO phenomenon: 

Numerical Example: 

The developed RBRDO model was applied to optimize the inventory management system of a manufacturing 

company. The initial system had a total cycle time of 107 days from order to delivery and an inventory 

management system reliability (IMSR) of 88.28% as shown in Table 1.  

 

Table 1. Initial design variables 

Variable  Value  

Total cycle time  107 Days  

IMSR  88.28% 

 

The goal was to reduce the total cycle time to 70 days while achieving a target IMSR of 95% By implementing 

the RBRDO model, the optimized design variables were determined as shown in Table 2. 
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Table 2. Optimized design variables 

Process Optimized Duration 

P1 12 Days 

P2 15 Days 

P3 10 Days 

P4 05 Days 

P5 06 Days 

P6 07 Days 

P7 08 Days 

P8 07 Days 

 

This optimized design resulted in a total cycle time of 70 days and met the target IMSR of 95%. The cost function 

was reduced from $210,000 to $173,393 through RBRDO iterations as shown in Table 3  

 

Table 3. Cost function at each RBRDO iteration  

Iteration Cost Function  

Initial  $ 210,000 

1 $ 200,000 

2 $ 190,000 

3 $ 180,000 

Final  $ 173,393 

The probability distribution of the total cycle time also improved significantly after RBRDO as shown in Figure 

1. 

Figure 1. Probability distributions before and after RBRDO 

The results demonstrate that the developed RBRDO approach can effectively optimize the inventory management 

system design. It balances costs and uncertainties to meet reliability requirements while reducing variability. This 

model provides valuable insights for inventory managers to make robust decisions under supply and demand 

uncertainties. 

 

Software Used 

The following software was used for analysis and modeling in this paper:  

 Microsoft Excel - Used for calculating model parameters and creating graphs  

  Python - Used for implementing inventory simulations and validating analytical results 

  R-Used for statistical analysis and fitting demand distributions 

 MATLAB-Used for numerical analysis and optimization 

These programs allowed for efficient calculation and validation of the mathematical models presented. Excel 

provided easy prototyping while programming languages like Python enabled more complex simulations. 
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Scope for Future Research 

This paper assumed deterministic demand and perfect measurements when analyzing inventory models. Future 

research could aim to incorporate the following practical complexities: 

 Stochastic customer demand-Inventory optimization under demand uncertainty 

 Forecast errors - Optimal policies when demand forecasts contain errors 

 Supply variability-Managing inventory with uncertain supply quantities and lead times 

 Limited visibility-Inventory tracking with periodic reviews or stock loss 

 Multi-echelon systems-Coordinating policies across supply chain networks  

     

Additionally, expanding the objective function beyond cost minimization could provide further insights 

Optimization models could aim to maximize customer service levels or incorporate environmental impacts. 

Relaxing other modeling assumptions could also better align inventory theories with real-world practices.  

 

Conclusion 

This paper presented foundational inventory management models including EOQ EPQ, new vendor, and base 

stock policies. These models provide mathematically optimal inventory decisions under assumptions of 

deterministic demand and perfect measurements. The governing equations, graphical representations, sensitivity 

analysis, and numerical examples provide insights into balancing relevant costs like ordering, holding, and 

backlogging. However, businesses must consider further complexities when designing inventory management 

systems Opportunities exist to expand theoretical research into stochastic demand settings and imperfect 

measurements. Inventory modeling and optimization will continue to be an active area of research and application 

for advancing supply chain operations. Consequently, stochastic demand analysis, multi-echelon systems, 

practical extensions, and foundational deterministic models have all been developed in the process of inventory 

modeling and optimization. Inventory management will continue to be a vital research area as supply chains 

become more complex. The abundance of data sources offers chances to create improved analytical methods 

Models must, however, strike a balance between complexity and usability. To advance inventory management 

research and practice, it is essential to comprehend trade-offs and integrate findings across model assumptions, 

business contexts, and technical capabilities. 
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