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Abstract 

Software quality assessment depends on software reliability, which is a vital factor. It is tested multiple times 

before launching software to ensure it is error-free. Software reliability growth models (SRGMs) have proven 

invaluable for developers and testers providing a framework to scrutinize random failures and ensure software 

quality. To address this need, there is a crucial need to integrate updated testing effort functions and various fault 

detection rates into SRGMs, aiming for software that surpasses previous standards. This study introduces a new 

SRGM, consisting of a Power-law testing effort function (PL-TEF) and a non-linear fault detection rate (FDR), 

both designed to be more practical in real-world contexts. The model proposed in this research is evaluated using 

optimization techniques, specifically employing an opposition-based grey wolf optimizer (OBL-GWO) algorithm. 

This optimization, conducted on a dataset of real failures, validates the efficacy of the model.  The results show 

that the proposed model is the best fit with the data, and the determination of the optimal release time for the 

proposed model is also calculated. In essence, the positive results derived from this research offer a progressive 

step forward in the pursuit of superior software quality. 

Keywords—NHPP, Software Reliability, Power-law TEF, Non-linear FDR, OBL-GWO. 

 

1. INTRODUCTION  

 Software developers play a pivotal role by crafting software with robust designs, prioritizing safety, and 

facilitating easy maintenance to enhance overall software reliability. The reliability of software is influenced by 

multiple factors, including its design, coding, testing procedures, and ongoing maintenance efforts even after the 

release of software. It underscores the necessity of careful testing and error resolution before the software is 

deployed and continuous maintenance and support further contribute to sustaining the reliability and security of 

the software. Particularly, this factor is critical in industries like aerospace and medical devices, and other domains 

where stringent safety standards apply. Ultimately, the reliability of software holds paramount importance in 

meeting user expectations and ensuring the desired outcomes are consistently delivered.  

 

Over the past four decades, many SRGMs have emerged, serving a crucial role in the realm of software testing. 

These growth models are mathematical frameworks employed for forecasting and evaluating software reliability 
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as it evolves. These models prove to be highly advantageous in the detection and resolution of defects that may 

occur during the software development phase. 

 

In 1981, Bev Littlewood et al. proposed an updated version of the first growth model of software reliability, 

originally developed by Jelinski and Moranda. The authors utilized maximum likelihood estimation (MLE) for 

parameter estimation to address the instability issue of the J&M model. P.K. Kapur et al. in 1992 utilized the NHP 

distribution mechanism using a software reliability growth model. The authors assumed that utilizing this 

technique may uncover previously unnoticed problems without resulting in any program failures. Yamada et al. 

introduced a growth model that takes into the account test effort required during the testing period. In 1996, Hou 

et al. utilized the Hyper-Geometric Distribution Software Reliability Model (HGDM) to address two significant 

challenges in the testing phase. The first challenge was to reduce the number of undetected software faults after 

testing, while the second challenge was to minimize the required testing resources. They discovered that 

employing an optimal resource allocation method can enhance the reliability of the software system being 

examined. In 2001, Kuo et al. attempted to develop an additional growth model utilizing non-homogeneous 

poisson processes (NHPP). In 2001, Pasquini et al. proposed a novel hypothesis on the failure of software systems. 

They argued that faults are not solely responsible for component failures but rather that the system as a whole, 

including human errors, can also contribute to these failures. 

 

In 2007, Huang et al. presented research that involved comparing several software reliability growth models 

(SRGMs) based on their sensitivity to the effort required to fix faults. The issue at hand was that certain S-shaped 

models may not perform optimally when faced with varying test efforts. Consequently, a new function was 

designed to address this concern. The number of reliability growth models was steadily expanding. In 2010, a 

distance-based model was introduced to aid in identifying the most suitable growth model for reliability testing. 

This model utilizes input parameters as selection criteria to generate a suitable model. In 2011, Huang et al. 

proposed a model that distinguishes the speed and number of faults between the debugging processes during the 

testing and operation phases of software life. They introduced the concept of "multi-points," which are specific 

points on a time graph that represent changes in the environment. Jain et al. (2020) explored a new method to 

predict the reliability of the software using the FRF and Gompertz methods to measure the testing effort. 

According to Kassaymeh et al. (2021), the conventional Backpropagation Neural Network (BPNN) has a 

limitation where its performance in making accurate estimation is influenced by the initial parameter values, 

impacting prediction. John et al. (2023) analyzing the reliability of multi-systems, consider different types of 

failure interactions. It assumes an exponential distribution for the failure and repair and use differential. 

 

Due to the software's resource-intensive nature, the testing process requires a significant allocation of resources, 

including personnel and resources. Previous studies have demonstrated the suitability of the Weibull, Reileigh, 

exponential, and other distributions for predicting resource consumption in the modeling of software reliability. 

This paper applies the NHPP to compute the number of faults and then uses them to estimate the parameters of 

the software reliability models. Section 2 of this study explains the Power-law testing effort function (PL-TEF). 
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Section 3 proposes a new framework to obtain the SRGM consideration of power-law TEF and non-linear FDR. 

Section 4 of the paper provides an in-depth explanation of the OBL-GWO optimization technique. In Section 5, 

the paper delves into the parameter estimation process within the OBL-GWO algorithm. To conclude, Section 6 

offers a summary of the key points discussed in the paper.  

 

1.1 The OBL-GWO algorithm is motivated by the utilization of software reliability growth models: 

The OBL-GWO algorithm represents an optimization approach that refines traditional Grey Wolf Optimization 

(GWO) algorithms through the incorporation of an opposition-based learning (OBL) technique. Its core 

motivation lies in establishing a more proficient and potent method for parameter estimation within software 

reliability growth models (SRGMs). In its initial phase, OBL is deployed to generate an initial set of solutions for 

SRGM parameter estimation, enhancing the speed and robustness of the convergence process in optimization 

algorithms. Following this, GWO is employed to further refine these initial solutions and identify the optimal 

solution. 

 

The central goal of the OBL-GWO algorithm revolves around the enhancement of software reliability. This is 

achieved by amalgamating optimization strategies inspired by the social hierarchy and hunting techniques 

observed in grey wolves into SRGMs. The emphasis lies on the more effective identification and rectification of 

software bugs, ultimately contributing to the development of software characterized by heightened reliability. 

 

2. TESTING-EFFORT FUNCTION 

A mathematical function that shows how the testing resources are used and changed over time during the software 

testing phase is called a testing-effort function (TEF). The testing-effort function (TEF) is an essential measure 

for estimating how much effort is spent in CPU time, labour, human resources, and the number of test cases the 

software need. It influences the software reliability and the rate of finding faults. 

The total amount of testing effort expended in the testing time interval (0,t] is denoted by W(t). 

                                                                         
t

0
dx)x(w)t(W

                                                                … (1) 

In this paper, the power-law (PL) curve is used to estimate the reliability and its cumulative testing effort 

consumed in the time (0, t] is 

                                                                          1k

t
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                                                                       … (2) 

and its current testing effort function is 

                                                                        

kt)t(w 
                                                                             … (3) 

Where α is the total expenditure and k is the positive shape parameter. 

 

3. SRGM with PL-TEF and Non-linear FDR 

This section discusses the SRG modeling in the context of the power-law testing effort function and non-linear 

FDR (b(t)). It is also considered that the testing team learns from their experience and becomes more adaptable.  

Our proposed model is based on the given hypothesis: 
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1. Failure of the software system occurs randomly due to some fault persisting, and the fault elimination 

procedure follows the NHPP. 

2. When a failure occurs, it is removed promptly, and when no new error is discovered during testing, i.e., 

debugging is perfect. 

3. FDR is considered non-linearly changing and improves efficiency with time. Testers learn from their 

experience. 

Based on the assumptions, we have the mean value function m(t) as 

                                                                 

)]t(ma)[t(b
)t(w

1

dt

)t(md


                                                   … 

(4) 

Where a(t) is the initial fault content function at time t and b(t) is the fault detection rate. 
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On putting the values of b(t) in equation (4), we get the expected removed faults by time t  
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Serial no. Model                   m(t) 

1 Exponential TEF (ETEF) 
]e1[a)t(m )e1(b t

 
2 Reyleigh TEF (RTEF) 

]e1[a)t(m )e1(b
2t  

3 Li and Yi (2016), b(t) is 

constant (LYM) 
Equation (6) 

4 Proposed model when b(t) is 

non linear. (PM) 
Equation (6) 

                             Table 1: Models of software reliability and mean value function(m(t)) 

4. OBL-GWO ALGORITHM 

4.1 Grey wolf optimizer algorithm (GWO): 

Mirjalili et al. created the GWO algorithm in 2014, drawing inspiration from the social hierarchy and hunting 

habits of grey wolves. The algorithm sorts the wolves into four ranks reflecting their roles: alpha (α), beta (β), 

delta (δ), and omega (ω). The alpha wolf is the leader of the pack and represents the best solution. Each grey wolf 

is under its control. While the beta wolf assists the alpha in decision-making and represents the second-best 

solution for the whole wolf. The delta wolf, also known as the subordinate wolf, represents the third-best solution 

for the grey wolves. The remaining wolves belong to the omega wolves. Omega wolves have the lowest score 

among the wolves. During the hunting, alpha, beta, and delta wolves play a vital role. These three types of wolves 
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are responsible for tracking, chasing, pursuing, surrounding, and attacking their prey. The hunting mechanism of 

the grey wolf is divided into three primary steps, which are given below: 

• They track, chase, and get closer to the prey. 

• They pursue, surround, and harass the prey until it stops moving. 

• They attack the target prey. 

 

4.2 Mathematical model of algorithm 

The alpha, beta, and delta wolves are the leaders of the hunt. They are essential for tracking, chasing, encircling, 

and attacking prey. The success of the search is dependent on these three wolves. The mathematical process can 

be calculated by following equations:                                           

                                                           
( 1) ( )pW t W t A D

   

   
                                                                 ... (7) 
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                                                                        22C r
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                                                                             ... (10) 

Where t represents the t-times iteration, W


and  pW


 represents the position vector of a grey wolf and its prey, 

A


 and C


 denotes two coefficient vectors, 1r and 2r  are uniformly generated two random numbers between 0 and 

1, the coefficient a is reduced from 2 to 0 during the iteration. 
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2
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a
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
 

                                                                    ... (11) 

Where t  represents the current iteration, and T indicates the total number of iterations. 

The algorithm updates the wolf's position based on the assumption that alpha, beta, and delta contain better 

information about potential locations of wolf prey. This suggests that the rest of the pack will modify its position 

based on the direction of the three dominant wolves. The mathematical process can be calculated by following 

equations: 
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where 
, ,W W W  

  

are positions of the alpha wolf (α), beta wolf (β), delta wolf (δ) in the search space, 

, ,C C C  

  

are three coefficient vectors. 

 

4.3 Opposition-based learning (OBL) 

Opposition-based learning (OBL) is an innovative concept in soft computing, introduced by Tizhoosh in 2005, 

aimed at expediting the convergence rates of meta-heuristic algorithms, particularly in estimating parameters for 

software reliability growth models. The core incentive behind OBL is to bolster the speed and overall performance 

of a broad spectrum of optimization techniques in terms of efficiency and effectiveness. The fundamental concept 

underpinning OBL is the simultaneous consideration of what has been learned by the algorithm over time and the 

generation of new, random guesses when creating the initial population. As the optimization progresses, 

introducing an opposite position for each potential solution during the stochastic enhancement phase can 

significantly improve convergence. This dual-process approach can be initiated at every iteration of the 

optimization method. 

 

Opposite number  

The opposite number ( 𝑍 ⃛ ) for any random values in between a and b (Z є [a, b]) can be calculated in the equation 

(15). 

                                                                            𝑍 = a + b – Z                                                                          ... (15) 
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Where, a and b are the upper and lower limit of the search space, and Z represents the initial position of the 

population. 

This definition is applicable to higher dimensions as well. Let Z = {z1, z2, …,zn} in a n-dimensional search space, 

where each zi (1 ≤ i ≤ n) falls within the range defined by ai and bi. To find the corresponding opposite point 𝑍= 

{𝑧1,𝑧2,...𝑧n}, you can use equation (16). 

                                                                             𝑍𝑖⃛ = ai + bi – Zi                                                                      …(16) 

 

4.4 OBL-GWO algorithm 

The conventional Grey Wolf Optimisation (GWO) algorithm has a reduced number of parameters for searching 

and is straightforward to apply. Nevertheless, the experimental results indicate that in certain instances, the 

exploratory ability of grey wolves is inadequate, leading to a tendency towards local optima. Therefore, there is 

potential to improve the wolves' ability to explore and make them more effective optimizers. Consequently, we 

have used a novel equation (Heidari et al. 2019) to investigate the behavior of grey wolves, enabling thorough 

exploration of the extensive search area. Furthermore, to enhance the efficiency of maintaining convergence 

speed, an Optimal Baseline Leader (OBL) algorithm, as proposed by Tizhoosh in 2005, is employed to guide the 

leading wolves in each iteration. 

The description of all the applied strategies is as follows:  

                                
    

1 2 51
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 
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                                                                                                                                                    …(17)                   

Where represents the location of the grey wolf in the iteration that follows the current iteration (t + 1)th, the vector

t

alphaZ
 represents the position of the alpha wolf at the tth iteration, and the variable

t

aZ
 represents the average 

position of grey wolves, In this equation, the current solution is formed based on either a random solution or the 

best answer. 

5. Parameter estimation in OBL-GWO algorithm 

The process of parameter estimation involves determining the best-fitting values for unknown parameters in a 

model based on observed data. In this research, we employ an OBL-GWO algorithm to optimize the parameters 

of both new and existing models. 

 

This section is to determine the best values that reduce the difference between the real and the predicted faults 

using the parameters estimated by PSO, GWO, and OBL-GWO. We have utilized a pre-existing dataset of 25 

weeks, as mentioned in the work of Chin-Yu Huang et al., and implemented three techniques: PSO, GWO, and 

OBL-GWO, to estimate a parameter of a software project using four SRGMs: Goel-Okumoto model, Inflection 

S-shaped model, Delay S-shaped model, and the Proposed model [Table 1]. All models have the same parameter 

range. We set the population size to 30 and the maximum number of iterations to 500 for PSO, GWO, and OBL-

GWO respectively. 
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 Table 2 indicates that OBL-GWO consistently outperforms PSO, GWO, and OBL-GWO in both mean and best 

solutions across all cases. This underscores the potency of OBL-GWO, demonstrating its ability to circumvent 

the limitations associated with PSO, GWO, and OBL-GWO, such as local best entrapment and premature 

convergence. In Figure 1, the optimal convergence graph illustrates the evolutionary process of four models—

Exponential TEF, Inflection S-shaped model, Delay S-shaped model, and the proposed model—all employing the 

OBL-GWO algorithm. Additionally, Figure 2 provides a comparative graph of the actual and estimated failure 

curves for the four development models. These analyses collectively affirm that the OBL-GWO algorithm 

consistently delivers superior results compared to conventional PSO, and GWO algorithms, excelling in terms of 

accuracy, convergence speed, and robustness. 

 

Mode

l  

            PSO            GWO            OBL-GWO 

 Mean SD Best Mean SD Best Mean SD Best 

ETEF 13.9034 1.22 11.62 14.883 8.15 10.09 11.730 0.85 10.66 

RTEF 15.5529 1.39 14.26 13.5539 1.61 11.51 11.701 1.16 10.28 

LYM 15.4481 2.44 12.04 13.3453 2.04 10.65 12.398 1.96 10.51 

PM 12.7285 1.21 11.00 13.0148 2.13 10.06 10.776 0.67 9.23 

             

Table 2.SRGMs with parameters estimated using OBL-GWO-25 weeks measurement. 

 

 

Figure 1: Best convergence for OBL-GWO algorithm applying various models on 25 weeks. 
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Figure 2: Actual and estimated failure for the OBL-GWO algorithm using various models on 25 weeks. 

 

6. Conclusion 

In this study, we examined whether the SRGM was enhanced by integrating a power-law testing effort and a non-

linear Fault Detection Rate (FDR) function. The model’s performance was evaluated using three optimization 

algorithms: PSO, GWO, and OBL-GWO, and the result observed that OBL-GWO converges faster than the other 

two optimization methods. The effectiveness of OBL-GWO has been confirmed in various studies, surpassing 

PSO and GWO in terms of convergence speed, quality of solutions, and overall robustness. The proposed approach 

will assist software developers in releasing software at the right time while ensuring the necessary desired 

reliability.  The Non-linear FDR function and PL-TEF may be combined with concepts such as change point 

phenomena, coverage function, and delay effects in future studies to get more enhance the model’s predictive 

capabilities. 
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