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ABSTRACT 

The calculation of the generalized commuting probability, which quantifies the likelihood of subsets of 

elements commuting within a finite group, is a fundamental problem in computational group theory. 

This abstract presents an overview of methods and algorithms developed for efficiently computing the 

generalized commuting probability of finite groups. The presented approaches contribute to the 

advancement of computational group theory, enabling researchers and practitioners to explore and 

understand the structure and properties of finite groups in various mathematical and scientific domains. 
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I. INTRODUCTION 

The concept of commuting elements in a group lies at the heart of group theory, providing insights into 

the structure and properties of the group. When two elements commute, their order of multiplication 

does not affect the result, and they can be rearranged without altering the outcome. The commuting 

probability, defined as the probability that two randomly chosen elements commute, has been 

extensively studied and utilized in various branches of mathematics and physics. 

In recent years, there has been growing interest in a generalization of the commuting probability known 

as the generalized commuting probability. Unlike the traditional commuting probability, which focuses 

on the commutativity of pairs of elements, the generalized commuting probability extends this notion 

to consider larger subsets of elements within a finite group. Specifically, it quantifies the likelihood that 

a randomly chosen subset of elements, of a given size, commute with each other. 

The study of the generalized commuting probability of finite groups is a rich and challenging area of 

research, with applications spanning from algebraic number theory to quantum information theory. 

Understanding the behavior of the generalized commuting probability provides valuable insights into 

the structure and symmetry of finite groups, shedding light on their algebraic properties and 

applications. 
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The calculation of the generalized commuting probability is a computationally demanding task, as it 

requires considering all possible subsets of a given size within the group and determining whether they 

commute. Naively computing the commuting probability for each subset is infeasible for large groups 

due to the exponential growth in the number of subsets. Consequently, the development of efficient 

computational methods and algorithms becomes crucial in order to tackle this problem and explore the 

generalized commuting probability for a wide range of groups. 

Previous research in this field has focused on various aspects of computing the generalized commuting 

probability, including exact computation methods, approximate estimation techniques, and algorithms 

tailored for specific classes of groups. Enumeration-based methods have been employed to exhaustively 

compute the commuting probability for small groups, but their applicability is limited due to their 

exponential time complexity. Approximate methods, such as sampling-based approaches and Monte 

Carlo simulations, offer a trade-off between computational efficiency and accuracy but require careful 

analysis and design to ensure reliable results. 

Despite the progress made in the field, challenges remain in efficiently calculating the generalized 

commuting probability for larger groups. One challenge arises from the inherent combinatorial nature 

of the problem, as the number of possible subsets grows exponentially with the group size. Additionally, 

the presence of non-commuting elements and the dependence of the generalized commuting probability 

on the chosen subset size introduce additional complexity. 

 

II. COMMUTING PROBABILITY OF FINITE RINGS 

In the context of finite rings, the concept of commuting probability does not have a direct interpretation. 

However, properties such as commutativity and the existence of zero divisors can have important 

implications for the structure and properties of finite rings. 

For any two elements s and r of a ring R, we write [s,r] to denote the additive commentator of s and r. 

That is, [s, r] = sr−rs. By K(S, R) we denote the set {[sr-rs]: s∈S, r∈R} and [S,R] denotes the subgroup 

of (R,+) generated by K(S,R). Note that [R, R] is the commutator subgroup of (R, +). Also, for 

any x∈R, we write [x,R] to denote the subgroup of (R,+) consisting of all elements of the 

form [x,y] where y∈R. 

The commuting probability of R, denoted by Pr(R), is the probability that a randomly chosen pair of 

elements of R commute. That is Pr(R)=|{(s,r)∈R×R:sr=rs}/|R×R|. The study of commuting probability 

of a finite ring was initiated by MacHale in the year 1976. Many papers have been written on commuting 

probability of finite groups in the last few decades. However, the study of the commuting probability 

of a finite ring was neglected. After many years, in the year 2013, MacHale resumes the study of 

commuting probability of finite rings together with Buckley and Ní Shé. In this paper, we obtain several 

bounds for Pr(R) through a generalization of Pr(R). We generalize Pr(R) as the following ratio 
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𝑃𝑟(𝑆, 𝑅) = |{(𝑠, 𝑟) ∈ 𝑆 × 𝑅: 𝑠𝑟 = 𝑟𝑠}/|𝑆 × 𝑅| 

if and only if R is a finite ring and S is a subring of it. Keep in mind that Pr(S,R) is the chance that any 

given pair of components, one from subring S and the other from subring R, commute. The subring S's 

commuting probability in the ring R is denoted by Pr(S,R). By definition, if Z(S,R)=S, then Pr(S,R)=1 

and Pr(R,R)=Pr(R).  

The study of commuting probability of a finite ring R, given by the ratio, 

𝑃𝑟(𝑅) ≔  
|{(𝑟, 𝑠) ∈ 𝑅 × 𝑅 ∶ 𝑟𝑠 = 𝑠𝑟}|

|𝑅 × 𝑅|
 

originated with MacHale back in 1976. In this subsection, we review the results on Pr(R) that will be 

used in the subsequent chapters and throughout the thesis. 

By above equation, we have 

Pr(𝑅) =
1

|𝑅|2
∑|𝐶𝑅(𝑟)|

𝑟∈𝑅

 

and hence  

Pr(𝑅) =
|𝑍(𝑅)|

|𝑅|
+

1

|𝑅|2
∑ |𝐶𝑅(𝑟)|

𝑟∈𝑅/𝑍(𝑅)

 

 

 

III. APPROACHES FOR COMPUTING THE GENERALIZED COMMUTING 

PROBABILITY 

Approaches for computing the generalized commuting probability of finite groups can be classified into 

several categories, each with its own advantages and limitations. In this section, we will review some 

of the commonly employed methods and discuss their characteristics. 

Enumeration-Based Methods 

Enumeration-based methods involve exhaustively considering all possible subsets of a given size within 

the group and checking whether they commute. These methods provide an exact computation of the 

generalized commuting probability but are limited to small groups due to their exponential time 

complexity. 

One approach is to generate all possible subsets using combinatorial techniques such as generating all 

combinations or permutations. For each subset, the commutativity of its elements is verified. This 

approach guarantees accuracy but becomes computationally infeasible for large groups due to the 

exponential growth in the number of subsets. 

Group Presentation and Relators 

Another approach is to use the group presentation and relators to calculate the generalized commuting 

probability. Group presentation represents the group in terms of generators and relators, where the 
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relators capture the defining relations of the group. By analyzing the relators, it is possible to determine 

whether a given subset commutes or not. 

This method can be particularly useful when dealing with groups with known presentations, such as 

certain classes of finite groups or specific mathematical structures. However, determining the 

commuting probability using group presentation and relators can still be computationally challenging 

for larger groups with complex presentations. 

Sampling-Based Methods 

Sampling-based methods provide an approximate estimation of the generalized commuting probability 

by randomly sampling subsets from the group and checking their commutativity. These methods are 

computationally more efficient than enumeration-based methods but introduce a certain degree of error. 

One approach is to randomly sample a large number of subsets and calculate the proportion of 

commutative subsets among them. By increasing the number of samples, the estimation can converge 

to the true value of the generalized commuting probability. Monte Carlo simulations are often employed 

to generate random samples and obtain statistically reliable estimates. 

Statistical Estimation Techniques 

Statistical estimation techniques utilize statistical methods to infer the generalized commuting 

probability based on a limited set of observed data. These methods can be employed when only partial 

information about the group is available or when direct computation is infeasible. 

One such technique is maximum likelihood estimation (MLE), where a statistical model is formulated 

based on the observed data, and the likelihood of the data given a certain parameter (the generalized 

commuting probability) is maximized. MLE provides an estimate of the parameter that maximizes the 

likelihood of the observed data. 

Heuristic and Optimization-Based Approaches 

Heuristic and optimization-based approaches aim to find approximate solutions to the generalized 

commuting probability problem by leveraging techniques from optimization and computational 

intelligence. Metaheuristic algorithms, such as genetic algorithms or simulated annealing, can be 

applied to explore the solution space and search for subsets with high commutativity. These methods 

often trade off exactness for computational efficiency and may provide good approximations for large 

groups. It is worth noting that the choice of the most suitable approach depends on factors such as the 

size of the group, available computational resources, desired accuracy, and the specific properties of 

the group under consideration. 
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IV. PERFORMANCE METRICS 

Several performance metrics can be employed to evaluate the performance of algorithms for calculating 

the generalized commuting probability. The choice of metrics depends on the specific goals and 

requirements of the study. Some commonly used metrics include: 

Computation Time 

The time required to compute the generalized commuting probability for a given group. This metric 

provides insights into the efficiency and scalability of the algorithms. 

Space Complexity 

The amount of memory or storage required by the algorithms. This metric is important when dealing 

with large groups or limited computational resources. 

Accuracy 

The accuracy of the computed generalized commuting probability compared to the exact value (if 

available). This metric measures the reliability of the algorithms and their ability to produce accurate 

results. 

Approximation Error 

For approximate methods, the approximation error quantifies the deviation of the estimated probability 

from the true value. It can be measured using metrics such as mean squared error or relative error. 

Scalability 

The ability of the algorithms to handle larger groups efficiently. This metric examines how the 

computation time and resources required by the algorithms grow as the group size increases. 

Robustness 

The stability and consistency of the algorithms across different groups and datasets. Robust algorithms 

should perform well across a variety of group structures without significant fluctuations in their 

performance. 

 

V. CONCLUSION 

The study of computational methods and algorithms for calculating the generalized commuting 

probability of finite groups has yielded significant advancements in the field of computational group 

theory. These methods have provided valuable tools for analyzing the structure and properties of finite 

groups and have found applications in diverse areas of mathematics and beyond. By combining 

theoretical foundations, algorithmic design, and empirical evaluations, researchers and practitioners can 

continue to advance the field of computational group theory. Further research can focus on refining 

existing algorithms, developing novel approaches, and exploring applications of the generalized 

commuting probability in various fields. 
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