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ABSTRACT 

During information technology era, where fast retrieving information is obtained using computer networking 

and applications, such as banking systems and border security. Offline Signature verification and validation is 

the process of identifying the given signatures and verifying those signatures to differentiate the original from 

the forged ones, by using some mathematical procedures, generated by some pattern recognition algorithm. 

Mostly passwords and PIN codes are very easily to be forgotten. But unlike those passwords and PIN codes, 

Signatures are very hard to be forgotten or even simulated by others.  For that reason a system of 

authenticating the signature has been extensively used by the people as a secured way of identification. This 

paper presents an approach to find a method for signature authentication system by using Hidden Markov 

model. A hidden Markov model (HMM) is one in which you observe a sequence of emissions, but do not know 

the sequence of states the model went through to generate the emissions. Analyses of hidden Markov models 

seek to recover the sequence of states from the observed data. A publicly available database GPDS with Hidden 

Markov Model (HMM)   as a Classifier is an idea of this paper to implement authentication of Handwritten 

Signature. 
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I. INTRODUCTION 

 

Signature verification methods can be performed in two ways; off-line signature verification mode and on-line 

signature mode. Off-line verification methods depend on the features that can be extracted from still images of 

the handwritten Signature which is already available. On the other hand, in the on-line methods, the signature is 

verified in real time while the person is signing [2]. With the help of the lowest error rate as a result of the 

verification system is the biggest challenge of accepting or rejecting an offline signature.  

Basically, there are two approaches are available for Offline Signature Verification: 1. Pseudo Dynamic 2. 

Pseudo Static. Pseudo dynamic approach involves imperceptive or insensitive characteristics; therefore it is very 

inflexible to imitate. While static approach involves perceptive or sensitive characteristics, and therefore it is 

easy to imitate those signatures.  

Many approaches are used for signature verification, including elastic image matching, Neural Networks and 

Euclidean Distance Classifier. This research proposes an off-line signature verification and validation system for 

handwritten signatures; by using Hidden Markov Model.  

Static/Offline signatures derive as handwritten images on documents and by definition do not contain any 

dynamic information. This lack of information makes static signature verification systems significantly less 



International Journal of Advanced Technology in Engineering and Science                 www.ijates.com  

Volume No 03, Special Issue No. 01, April  2015                            ISSN (online): 2348 – 7550 

376 | P a g e  

reliable than their dynamic counterparts. This study involves extracting dynamic information from static images, 

while the signature was created. With the help of a hidden Markov model from the static image and match it to 

the dynamic version of the image the signature authentication would be done. 

 

II. METHODOLOGY    

 

Handwritten signature verification and recognition system is mainly divided into following steps.  

 Data Acquisition  

 Preprocessing  

 Feature Extraction  

 Classification 

2.1 Data Acquisition 

This is the phase we used to collect the scanned images of the signature collection by the scanner in order to 

have the digital form of the images for the processing. 

2.2 Image Preprocessing  

The purpose in this phase is to make signatures standard where the enhancement of the image is needed for the 

entire system and to be organized for feature extraction. Preprocessing steps can be invoked by using the 

following operations,  

 

III. FILTERING 

 

The removal of noises in the images will give the expected output. 

 

IV. MORPHOLOGICAL OPERATIONS 

 

Morphological operations are used to extract image components that are useful in the representation and 

description of region shape, such as  

 Boundary Extraction 

 Skeletonization 

 Convex Hull 

 Filtering 

 Thinning 

 Pruning 

 Dilation 

 Erosion 

The preprocessing phases include the following steps: Background Elimination, Conversion of image to Binary, 

Image Resizing, Noise Reduction, Width Normalization and Skeletonization etc.  

 

4.1 Background Elimination 

The removal of the background of the test signature image will give much clear display. 
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4.2 Conversion of Image to Binary 

Gray scale of the test signature image should be converted into binary image for making the feature extraction 

process easier. 

4.3 Image Resizing 

Standard size of the image is needed when signatures are in different sizes.    

 

4.4 Noise Reduction 

Reducing the noises if any presents in the test signature 

 

4.5 Skeletonization 

Making the given image into a distinct pixel width is called as Skeletonization. The creation of a skeleton of the 

image can be obtained by applying some iterative process in the object, layer by layer until only the object is 

spine, which form the skeleton remains, this iterative process is called thinning.  

 

4.6 Thinning 

A thinning algorithm contains a set of pixel deleting conditions, which enable it to erode the object iteratively. 

The skeletonization steps are as follows.  

Step 1: mark all the points of the signature that are candidates for removing (black pixels that have at least one 

black with 8-white neighbor and at least two black with 8-white neighbors).  

Step 2: Examine one by one pixel following the contour lines of the signature image, and remove them as their 

removal will not cause a break in the resulting pattern.  

Step 3: If at least one point was deleted then go back to Step 1 and repeat the process once again. 

Skeletonization makes the extracted features invariant to image characteristics like the qualities of the pen, the 

paper, the signer, the digitizing method and quality. The Skeletonization process supports the following 

properties, so that the thinning result can be characterized as a skeleton of the 2D binary object. 

This system starts with image preprocessing. The above diagrams illustrate various image processing steps 

involved in the Signature Verification System. In this step the noise is removed to eliminate unwanted 

information that negatively influences accuracy of verification and validation. Next, we perform a registration 

step where the signature is scaled into an appropriate form to gain better and accurate result, after that, the 

shifting operation invoked using center of gravity (COG) to determine the centric of the signature.  
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After applying shifting operation, the rotation is performed to align the signature to the correctly position. 

Experimental results show that the proposed system has high accuracy compared with other systems. Generally 

extracting the dynamic information from the static handwritten images can have useful applications. 

Our approach constructs a Hidden Markov Model (HMM) from the static image. An HMM is a probabilistic 

model that models a time-dependent sequence of events with a sequence of states having transitions between 

them. In our case, the HMM describes the pen trajectory that created the image. Each state has an associated 

PDF, embedding geometric shape information of the static image. The HMM topology specifies the 

interconnection of states. Transitions between states are weighted with transition probabilities to dictate possible 

pen movements between static image coordinates.  

Normally, both the state PDFs and the transition probabilities are obtained through a training process. Although 

training is possible for this application as well, data scarceness is a serious problem and we chose to specify the 

PDFs and transition probabilities in advance. It is not able to completely resolve ambiguities in regions with 

multiple intersections. The problem is due to a loss of context caused by the use of first-order HMMs: transition 

probabilities depend only on the current state. Higher-order HMMs, whose transition probabilities depend not 

only on the current state but also on the previous states, are much better equipped to take context into account. 

Usually, higher order HMMs tend to be computationally expensive. In this study, however, we use a second-

order HMM with sparse transition probability matrices, reducing the computational cost to a manageable level. 

The suitable second-order HMM that is derived from a basic first-order HMM. Further, context is provided by 

comparing not only pen positions but also local line directions. 

 

V. THE HIDDEN MARKOV MODEL 

 

An HMM has N emitting states {q1,q2, . . . , qN} that have observation PDFs associated with them. The two 

states q0 and qN+1, without associated PDFs, are called nonemitting states. These two additional nonemitting 
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states serve as initial and terminating states, respectively, thus eliminating the need for separate initial and 

terminating probabilities (see [34] for more detail). 

All state observation PDFs in the context of this paper are spherical Gaussians, described by 

 

 

where x is a D-dimensional vector that must be matched to the PDF and µ is the D-dimensional mean of the 

Gaussian. 

The standard deviation σ is preset. For brevity, the PDF associated with state i having mean µi and standard 

deviation σ will be referred to as N(µi, σ). Geometric shape information of the static image is embedded in the 

PDF parameters µi and σ, as described in Section 3.2. 

States are connected by transition links that dictate the possible pen movements. All transitions between states 

are weighted with transition probabilities. The order of the HMM specifies the number of previous states the 

HMM considers when transiting to a next state. Sections 3.2-3.6 describe how the order of our HMM is 

increased to take context into account.  

In order to match a static image and a dynamic exemplar, the dynamic exemplar is presented as a sequence of 

quantifiable characteristics called feature vectors. The  sequence is given by X =[x1, x2, . . . , xT], where xt 

denotes a D-dimensional feature vector at discrete-time instant t and T is the number of feature vectors (number 

of samples in the dynamic exemplar). Using the Viterbi algorithm, X is matched to our HMM to produce a 

hidden state sequence    s =[s1, s2, . . . , sT], which estimates the desired sequence of skeleton samples, as 

described in Section 3.7. 

 

5.1 First-Order HMM 

The shorthand notation for an HMM  

λ is  

          λ={A,{N(µi,σ), i=1, . . .;N}},         (2) 

 where A is a matrix representing the transition links and N(µi,σ), as described by (1), is the observation PDF of 

state I           for I Є {1,…..N}.  

 

We begin by constructing a first-order HMM from the skeleton of the static image. The skeleton consists of M 

unordered samples {p1, p2, . . . , pM}, where px is the 2D coordinate of sample x. Each emitting state i is 

associated with a skeleton sample via a mapping r(i) and the sample coordinates are embedded in the 

observation PDF by setting µi=pr(i). For a first-order HMM, we have N = M and     r(i)= i. Our first-order HMM 

matches only 2D feature vectors, in this case, the pen positions of the dynamic exemplar. We choose σ= 0.7 

pixels in (2) for all states, in order to relate the match between the position coordinates of the dynamic exemplar 

and static image to Euclidean distance. 

The HMM topology is crucial to our algorithm, as it constrains the range of possible pen movements that could 

generate the static image. For our first-order HMM, the probability of reaching the next state depends only on 

the current state, so that the transition probability matrix A =[aij], where aij = P(st+1 = qj|st = qi) is the 

probability of a transition from qi to qj at instance t + 1, with I, j Є{0, 1, . . .,N + 1} and                              t Є 

{1, 2, . . . , T – 1}.  
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HMM states are called neighbors if their associated skeleton samples are adjacent. All emitting states are linked 

to their neighbors, to allow the pen to move to an adjacent skeleton point on a transition. However, this only 

takes local information into account, and not context. Context is incorporated by using second-order HMMs, 

which allow us to include a directional feature, as described in Section 3.3. 

Since we have no prior knowledge of where the pen trajectory of the static image may start or end, the non-

emitting initial state can enter any emitting state. Also, each emitting state is directly connected to the non-

emitting terminating state. One also needs elasticity in the model, to allow the static image and dynamic 

exemplar to have different numbers of samples. This is accomplished by including skip-links and self-loops in 

the HMM. A skip-link is a transition between two states separated by a neighbor common to both. 

 

Fig. 4 

(a) Isolated unordered skeleton samples in a simplified signature 

(b) their corresponding first-order HMM. 

A self-loop connects a state back to itself. Self-loops are added to the emitting states. In this paper, we use skip-

links to skip states with only two neighbors. Equal transition probabilities are assigned to all transition links 

leaving a state, normalized to sum to one. 

We emphasize an important feature of Fig. 4b. Any two neighboring emitting states and any two emitting states 

connected by a skip-link are connected both ways: If one enters the HMM at an emitting state with more than 

one neighbor it is not possible to determine locally in which direction one should move next and, therefore, both 

directions are allowed. Since all transition links are assigned the same probability, all skeleton samples are 

potential turning points. It is therefore entirely possible and it indeed happens, in practice, that the extracted pen 

trajectory may incorrectly reverse direction. One way to address this problem is to include more context. Bengio 

and Frasconi [35], supported by the experiments of Abou-Moustafa et al. [36], investigated the     effect of 

topology on the ability of an HMM to learn context. 

They showed that the addition of hidden states with a sparse connectivity can increase the ability of a Markov 

model to learn long-term dependencies and reduce the diffusion of context. The topology of our first-order 

HMM is ergodic with a sparse connectivity. When using second-order HMMs, we include extra states and the 

connectivity becomes even sparser in a natural way, as discussed in the next section. 

Thus, in accordance with Bengio and Frasconi, we improve the ability of the HMM to model context. 

 

VI. SECOND-ORDER HMMS AND THEIR FIRST-ORDER EQUIVALENTS 

In order to take past context into account, we use second order HMMs. We have shown that the transition 

probabilities of first-order HMMs only depend on the current state, so that aij = P(st+1 = qj|st = qi). The transition 

probabilities of second-order HMMs depend on the current and previous states. The probability of a transition 
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from state j to state k, given that state j is preceded by state i, becomes aijk = P(st+1 = qk|st-1 = qi,St=qj). Second-

order HMMs can then be reduced to first-order equivalents to simplify their implementation, by using the Order 

Reducing (ORED) algorithm [34], [37]. These ideas are illustrated in Fig. 5. The HMM fragment in the figure 

forms part of a larger HMM. We only consider the transitions between the visible states. The second-order 

HMM in Fig. 5b is formed by extending all transitions of the first-order HMM in Fig. 5a to second-order 

connections (the order of the transitions is encoded in the subscripts of the transition probabilities). We do not 

show second-order connections depending on states outside of the HMM fragment shown.  

The basic idea behind the ORED algorithm is to reduce an Rth-orderHMMto its (R - 1)th-order equivalent, by 

creating states for all pairs of connected states in the Rth-order HMM. Applying this procedure  recursively, we 

reduce an HMM of arbitrary order to its first-order equivalent [34], [37]. The first order equivalent of the 

second-order HMM of Fig. 5b is shown in Fig. 5c. It should be noted that new first-order transition probabilities 

are created from the second-order probabilities. Bottom numbers, in general, now label the state PDFs which in 

our application translate to the skeleton indexes inherited from the first-order model. States k and m (top 

numbers), for example, are created in Fig. 5c from the connected pairs jk and km in Fig. 5b, with the same PDFs 

(bottom numbers) as states k and m. They are connected by a dkm =ajkm, so that one can interpret ajkm as a first-

order transition probability. In general, M different pairs of connected states in the Rth-order model result in 

approximately M states in the (R - 1)th-order model. The pairs kk, jk, ik, ij, km, and xi in Fig. 5b, for example, 

are connected and become states n, k, o, j, m, and i in Fig. 5c, respectively, where x can be any state connected 

to i via a dashed line. 

The order reduction significantly increases the number of states. An Rth-order model with N states reduces to an 

equivalent first-order model with O(N
R
) states. However, it should be noted that this expansion does not 

increase the number of free parameters. Tied PDFs, which are PDFs shared by more than one state, are 

evaluated only once and only the original number of transition probabilities need to be considered. Therefore, 

the ORED algorithm does not affect processing requirements. It is shown by [38] that memory requirements are 

not affected either. Computational cost depends on transition probabilities, as discussed in the final section. The 

computational cost of our proposed algorithm is manageable, as our transition probability matrix remains sparse. 

This avoids redundant calculations. In the following sections, we show how to use the flexibility of higher-order 

HMMs to model handwritten scripts, starting with line segments. All second-order HMMs will hereafter be 

represented by their first-order equivalents, without loss of generality. 

 

Fig. 5. (a) A first-order HMM Expanded to (b) a Second-Order HMM, and (c) the First-Order 

Equivalent of (b)

Static signatures originate as handwritten images on documents and by definition do not contain any dynamic 

information. This lack of information makes static signature verification systems significantly less reliable than 
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their dynamic counterparts. This study involves extracting dynamic information from static images, specifically 

the pen trajectory while the signature was created. 

 

 

Fig. 6. The Simplified HMM Topology for a Line Segment in the Left-Hand Column with a 

Detailed Version in the Right-Hand Column when Skip-Links are Added to our first-order 

HMM. 

 (a) and (b) First-order HMMs.  

 (c) and (d) Second-order HMMs. 

 (e) and (f) Assigning the cost function.  

 (g) and (h) Removal of self-loop states. 

 (i) and (j) Inclusion of duration states 

*Reference: Estimating the Pen Trajectories of Static Signatures Using Hidden Markov Models 

Emli-Mari Nel, Johan A. du Preez, IEEE, Member, and B.M. Herbst 

Ieee Transactions On Pattern Analysis And Machine Intelligence, Vol. 27, No. 11, November 2005 1733 
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VII. CONCLUSION 

This system is robust and can detect random, simple and semi-skilled forgeries but the performance deteriorates 

in case of skilled forgeries. Using a higher dimensional feature space and also incorporating dynamic 

information gathered during the time of signature can also improve the performance. The concepts of Hidden 

Markov Model hold a lot of promise in building systems with high accuracy. We assume that a dynamic version 

of the static image is available (typically obtained during an earlier registration process). We then derive a 

hidden Markov model from the static image and match it to the dynamic version of the image.  
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