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ABSTRACT 

Sequence alignment is one of the most important tools available to molecular biologists in order to find 

similarities between two or more DNA or protein sequences. However, despite several advances in this field, 

multiple sequence alignment (MSA) is often a slow process, and still, optimum results cannot be guaranteed. 

MSA is an important prerequisite for constructing phylogenetic trees, which are often the underlying goal for 

biologists to trace the evolution of closely related species.  In this paper, we propose a randomized algorithm 

that can produce a sufficiently good MSA, for huge datasets, in a fraction of the time taken by contemporary 

MSA algorithms. 
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I. INTRODUCTION 

 

Ever since sequence alignment gained significance, a large number of algorithms have been published. Most of 

these can be divided into two categories: pairwise sequence alignment algorithms and multiple sequence 

alignment algorithms. Pairwise sequence alignment is probably more of a theoretical interest only, as most 

problems deal with multiple sequences. However, we need to understand how pairwise sequence alignment 

works in order to proceed to multiple sequence alignment. Compared to MSA, pairwise sequence alignment 

algorithms can produce optimum results because of the small size of their input sequences. Several dynamic 

programming algorithms are available for this: the most famous being that of Needleman and Wunsch [1] and 

that of Smith and Waterman [2]. The former deals with global alignments while the latter with local alignments. 

Both of these produce the best possible alignment for the two given sequences. Several improvements in time 

complexity of these algorithms were made in later times, most notably by Gotoh [3] and then by Altschul and 

Erickson [4]. 

As DNA sequencing techniques improved, sequence databases started growing exponentially. A new problem 

was introduced: database search. Given a query sequence, an algorithm was required that could give out the 

most closely matching sequence in the database. A naïve solution would be to perform a pairwise sequence 

alignment of the input sequence to every sequence in the database, and then reporting the entry for which the 

alignment score was the highest. The alignment score is the sum of matches of nucleotides (or amino-acids in 

case of proteins) at each position of the aligned pair, reduced by the penalty score for mismatches and gaps. 

However, the time complexity of the dynamic programming algorithms, as well as the huge size of the databases 
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prevented this solution from being feasible. A new type of algorithm was required that could scale well to huge 

datasets, and the FASTA algorithm was introduced by Lipman and Pearson [5]. It was based on heuristics, and 

as such, it did not produce the most accurate alignments. However, it was sufficiently accurate to be used for 

database search. A few years later, BLAST [6], an extremely fast heuristic algorithm, replaced FASTA as the 

workhorse of the biological community, for database search.  

 

II. THE PROPOSED ALGORITHM 

2.1 Pairwise Sequence Alignment 

Before proceeding to discuss MSA, we need to explore a randomized pairwise sequence alignment algorithm, 

on which our proposed MSA is based. This pairwise sequence alignment algorithm, as presented by Nag and 

Karforma [7], starts off by chopping the pair of input sequences into sub-sequences. Each such pair of sub-

sequences are then aligned, and the final alignment is thus simply the concatenation of the aligned subsequences. 

The randomness in the algorithm comes from the fact that the size of the subsequence chosen is completely 

random. Moreover, the lengths of the subsequences in any pair may be unequal. The alignment phase proceeds 

by sliding a subsequence against its counterpart, and calculating the alignment score for each such sliding 

configuration. The alignment pertaining to the configuration with the highest score is selected, and the process 

continues to the next subsequence-pair. However, with each configuration, some amount of residue from any 

one of the pair of subsequences may be returned back to the original, as yet unscanned, portion of the sequences.  

In Fig. 1, we see the various possible sliding alignments between the two DNA sub-sequences: ATTAGC and 

TTCGAA, which are possibly part of a pair of much larger DNA sequences. The best possible alignment has a 

match score of 3, and the thin line shows the residue. Anything to the right of that line will not be included in 

the current alignment. This constitutes the nucleotide A of the 2
nd

 string in this case, which will be returned to 

the unsliced portion of the second string, and reconsidered for the next slicing into two substrings. 

 

Fig. 1. Possible Sliding Alignments Between Two DNA Subsequences Along with Their Match 

Scores. The best sliding configuration is highlighted. 

The pairwise sequence alignment discussed here is important because of two reasons: 

1. It has the best space complexity of any alignment algorithm. Space complexity may not be an issue in 

pairwise alignment, but is very important in MSA because of the large number of sequences that needs to 

be aligned. 

2. It forms the basis for our proposed multiple sequence alignment algorithm 
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2.2 The Proposed Multiple Sequence Alignment Algorithm 

2.2.1 Random Shuffling 

The algorithm begins by shuffling the given input sequences using the Durstenfeld-Fisher-Yates shuffle [8] 

algorithm, aligning each configuration, evaluating the alignment score for that particular combination, and then 

returning the aligned sequences with the highest score. This process is customizable in that, the user can select 

the number of shuffling rounds to be performed. By default, the algorithm performs the shuffling five times. 

2.2.2 MSA Scoring 

The scoring system used in our algorithm is the Sum-of-Pairs Score for each pairwise alignment. The score 

takes into account three types of penalties: periphery-gap-penalty, gap-opening-penalty, and the gap-extension-

penalty. Usually, the periphery-gap-penalty is set to zero, as we are interested in local alignments only. 
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2.2.3The Alignment Process 

The alignment process follows a divide-and-conquer (DAC) approach where at each step, the set of sequences to 

be aligned is divided into two halves, and the MSA algorithm is applied on each set. The division into subsets 

continues till the number of sequences in a set reaches two. After that, the heuristic algorithm for pair-wise 

sequence alignment due to Nag and Karforma [7] is used for aligning the pair. 

During the merging phase of DAC, a representative string is computed from each of the 2 sets – x0 and x1. A 

representative of a set of sequences is the string containing the character occurring with the highest frequency at 

each column position. These two representatives are then aligned multiple times. The number of rounds can be 

customized by the user; by default, it is set to five. The best sliding-configuration or alignment is selected for 

which the score is the highest. It is clear that one of the shift-value (of the selected alignment) in the pair must 

be zero.  

Each sequence in the set xi is then shifted by s places (i.e. gaps are inserted to the left) – s being the non-zero 

shift-value of the selected alignment, and for each sequence in the set x1-i, gaps are inserted to the right to 

equalize the lengths of the two sets. This gap insertion process is repeated for each k-mer in each set separately 

and not on the whole sequence. When all k-mers have been accounted for, the resulting shifted sequence sets are 

merged to form the complete set, whose MSA score is then calculated. The best complete-set is returned by the 

merging phase whose score is the maximum. 

2.2.4 User Parameters and Scoring Matrix 

The algorithm accepts two tunable parameters from the user: ROUNDS and RANDOM-ROUNDS. The 

ROUNDS parameter is used to tune up the pair-wise alignment algorithm, while the RANDOM-ROUNDS 

parameter determines the number of shuffling rounds to be used. For protein sequences, BLOSUM-62 was used 

as the scoring matrix. 

 

III. RESULTS AND DISCUSSION 

 

Since the proposed algorithm is a randomized one, performance can vary with the particular sequences to be 

aligned. The average k-mer length chosen at each subdivision step, being random – it has a visible effect on the 
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quality of the alignments produced. When implemented, the algorithm successfully aligned 5000 sequences, 

each of average length 1000, in 1 minute on a dual-core 2.3GHz CPU. 

The recurrence relation for the running time of the sequence alignment algorithm is given by: 

 ))(.( nTXO MSA , where, 
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Where, 

n is the number of sequences to be aligned, m is the average sequence length, 

R is the user-specified ROUNDS parameter, X is the user-specified RANDOM-ROUNDS parameter, 

W is the average k-mer length (during subdivision) 

 

IV. CONCLUSION 

 

The MSA algorithm proposed in this paper can be used when fast approximate alignments are required. Our 

algorithm outperforms the MUSCLE [9] algorithm in terms of speed, but is not as accurate. However, in this 

paper, our goal is not to produce an accurate and biologically meaningful alignment. Rather, the objective of the 

proposed MSA algorithm is to only aid in the phylogenetic tree construction in the fastest way possible, 

specially for huge datasets. Such an approximate tree can then serve as a guide tree for yet another round of 

MSA. Since the guide tree affects the quality of MSA, it is essential that the guide-tree be sufficiently accurate, 

yet be fast to construct, as it is not the goal itself but an aid to help generate quality alignments. In such 

situations, the proposed algorithm can be used to construct a rough alignment, generate a guide-tree using that 

alignment, and then using that guide-tree to construct the actual MSA. 
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