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ABSTRACT 
 In the area of wireless sensor networks, measurements that significantly vary from the normal pattern of sensed 

data are regarded as outliers. The possible sources of outliers include noise and errors, events, and malicious 

attacks on the network. The compressive data gathering, which is grounded on the recent breakthroughs in 

compressive sensing theory, has been suggested as a feasible access for wireless sensor network. In this paper, 

we investigate the impact of outlying sensor readings on data gathering, and propose an approach based on the 

compressive sensing theory to recover the original signal when it is under the effect of noise. Our design is 

validated by a comparison based simulation work, and comparison is executed along the basis of Average 

Relative Error (ARE) that is the average of the proportion between the remainder of the estimated reading and 

the true reading vs. the true interpretation. 
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I. INTRODUCTION 

 
A wireless sensor network (WSN) typically consists of a large number of small, low-cost sensor nodes 

distributed over a large area with one or perhaps more powerful sink nodes gathering readings of sensor nodes. 

The sensor nodes are integrated with sensing, processing and wireless communication capacities. Each node is 

usually equipped with a wireless radio transceiver, a small microcontroller, a power source and multi-type 

sensors such as temperature, humidity, light, heat, pressure, sound, vibration, etc. The WSN is not only used to 

provide real-time data about the physical world but also to detect time-critical events. A wide variety of 

applications of WSNs include those relating to personal, industrial, business, and military domains, such as 

environmental and habitat monitoring, object and inventory tracking, health and medical monitoring, field 

observation, industrial safety, etc. In many of these applications, real-time information mining of sensor 

information to quickly make intelligent decisions is all important. Data measured and collected by WSNs is 

often treacherous. The quality of the data set may be borne on by noise & error, dropping values, duplicated 

data, or discrepant information. The traditional approach of reconstructing signals or images from measured data 

follows the well-known Shannon sampling theorem which says that the sampling rate must be twice the highest 

frequency. Likewise, the fundamental theorem of linear algebra suggests that the number of collected samples 

(measurements) of a discrete finite-dimensional signal should be at least equally great as its length (its 

dimension) in order to ensure reconstruction. This principle underlies most devices of current technology, such 

as analog to digital transition, medical imagery or audio and video electronics. The novel theory of compressive 
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sensing (CS) — also recognized under the terminology of compressed sensing, compressive sampling or sparse 

recovery — provides a fundamentally new approach to data acquisition which overcomes this common wisdom. 

It anticipates that certain signs or images can be recovered from what was previously thought to be highly 

incomplete measurements (data).    

 
II. COMPRESSIVE DATA GATHERING 

 
The data gathering sensor network finds a diversity of applications in infrastructure and habitat monitoring. It is 

anticipated that the number of sensor nodes deployed could be along the order of hundreds or thousands. In 

general, data transmissions are accomplished through multi-hop routing from individual sensor nodes to the data 

sink. Successful deployment of such large scale sensor networks faces two major challenges in effective global 

communication cost reduction and in energy consumption load balancing. The need for global communication 

cost reduction is obvious because such sensor networks typically are composed of hundreds to thousands of 

sensors, generating tremendous amount of sensor data to be delivered to data sink. It is very much desired to 

take total advantage of the correlations among the sensor data to trim back the monetary value of 

communication. Existing approaches adopt in-network data compression, such as entropy coding or transform 

coding, to reduce global traffic. Nevertheless, these approaches introduce significant computation and control 

overheads that often not suited for sensor network applications. 

 

 

 

 

 

 

    

Fig.1 Compressive Data gathering sensor network. 

 

The basic thought of the proposed compressive data gathering (CDG) is pictured in Fig. (1) Instead of receiving 

individual sensor readings, the sink will be sent a few weighted sums of all the readings, from which to restore 

the original data. To transmit the i
th

 sum to the sink, s1 multiplies its reading d1 with a random coefficient φi1 and 

sends the product to s2. Upon getting this message, s2 multiply its reading d2 with a random coefficient φi2 and 

then charges the sum φi1d1 + φi2d2 to s3. Likewise, each node SJ contributes to the relayed message by adding 

its own product. 

 

 

 

 

 

 

 

Fig.2 Data gathering sensor network 
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It is some other significant feature of compressive sensing used in compressive data gathering that practical 

reconstruction can be executed by using effective algorithms. Since the stake is in the vastly under sampled case, 

the linear system describing the measurements is underdetermined and therefore has infinitely many answers. 

The central idea is that the sparsity helps in keeping apart the original vector. The first naive approach to a 

reconstruction algorithm consists in seeking for the sparse vector that is coherent with the linear measurements. 

This contributes to the combinatorial ℓ0-problem which unfortunately is NP-hard in general. There are basically 

two approaches for tractable alternative algorithms. The first is convex relaxation leading to ℓ1-minimization — 

also known as basis pursuit whiles the second construct greedy algorithms. This overview focuses on ℓ1-

minimization. By now basic properties of the measurement matrix which ensure sparse recovery by ℓ1-

minimization are known: the null space property (NSP) and the restricted isometry property (RIP). The latter 

demands that all column sub-matrices of a certain size of the measurement matrix are well-trained. This is where 

probabilistic methods come into gaming because it is rather difficult to break down these properties of 

deterministic matrices with minimal amount of measurements. Among the provably good measurement matrices 

are Gaussian, Bernoulli random matrices, and partial random Fourier matrices. 

 

III. SYSTEM MODEL METHODLOGY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Methodology for Compressive Data Gathering Scheme for WSN 
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3.1 Generation of Random original Signal 

 

First of all, the original signal x should be created to simulate the signal exist in the nature world. Base on the 

theory, this signal should be sparse in some domain. As it is created in Matlab, definitely, it is a digital signal. 

The data length N of the original signal x will be set to 900 and the sample frequency will be 100MHz [18]. The 

sine wave will be constructed as equation (1) : 

 

X = B (i) sin (2 f (i) t+ (i))                 i = 1, 2…, N                                    (1)  

 

Where X = the original signal,  

           B(i) = the amplitude,  

           f (i) = the frequency,  

            t = the time,  

           (i) = the phase of the signal. 

 

 

3.2 Addition of White Gaussian Noise in Signal 

 

AWGN is a basic noise model used in Information theory to mimic the effect of many random processes that 

occur in nature. 

 'Additive' because it is added to any noise that might be intrinsic to the information system. 

 'White' refers to the idea that it has uniform power across the frequency band for the information 

system. It is an analogy to the colour white which has uniform emissions at all frequencies in the visible 

spectrum. 

 'Gaussian' because it has a normal distribution in the time domain with an average time domain value 

of zero [18]. 

The addition of noise to the signal is shown in equation (2) : 

 

  Wi = Xi + N                                   i = 1, 2…, N                                                                  (2)     

 

  Where Wi = signal after adding Noise, 

              Xi = the original signal,  

              N = noise added to the signal.                   

3.3 Apply Autocorrelation function 

 

The autocorrelation function can be used for the following two purposes: 

 To detect non-randomness in data.  

 To identify an appropriate time series model if the data are random. 

 The function i.e. used on signal in eq. (2) is shown in eq.(3) : 

 

http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Visible_spectrum
http://en.wikipedia.org/wiki/Visible_spectrum
http://en.wikipedia.org/wiki/Visible_spectrum
http://en.wikipedia.org/wiki/Normal_distribution
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 Gi = (Wi) corr (Wi);                             i = 1, 2…, P                                                           (3)    

  

Where Gi = signal after applying autocorrelation function, 

           Wi = signal after adding Noise. 

 

 

3.4 Apply Fourier Transform 

 

Use the FFT to change the original signal y from time domain to frequency domain. The functions of FFT in 

Matlab can be used directly to compute the fast discrete Fourier transform of signal y and rearranges the result 

of FFT by moving the zero frequency components to the middle of the spectrum [14]. 

The function i.e. used on signal in eq. (3) is shown in eq. (4) : 

 

Gf = fftshift (fft (G, N))/N                                                                         (4)  

           

Where Gf = signal after applying Fourier transform 

             G = signal after applying autocorrelation function 

             N = No. of sensors nodes 

 

 

3.5 Generation of Measurement Matrix 

 

The digital signal x is presented as Nx1 vector in Matlab. In order to collect the elements of this vector a 

measurement matrix should be created to sample this vector. As said in the theory Section 1.5.1.4, the random 

matrix can fulfill the conditions of CS with overwhelming probability for the measurement matrix [14]. The 

matrix will be SxP dimensions matrix. The M value is calculated through the equation (6). 

The function i.e. used for generation of measurement matrix shown in eq.(5): 

 

A = randn (M, N)                                                                                      (5) 

 

Where A = Generated measurement matrix 

           M = Number of measurements 

            N = No. of sensors nodes 

 

 

3.6 Reconstruction of Original Signal 

 

As mentioned before, in this case, convex optimal method will be used to get the sparsest solution to reconstruct 

the sparse signal T. In Matlab, CVX which is Matlab-based modelling system for convex optimal programming 

will be used for convex optimal. 
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IV. PROPOSED MATHEMATICAL MODEL FOR COMPRESSIVE DATA GATHERING  

SCHEME 

 

4.1 Autocorrelation function on original signal 

Let’s say autocorrelation function R applied to the Original random signal x (Nx1) and it will give the signal 

let’s say y (Nx1): 

 

R                                                                                                        (6)  

                                                                                                              

4.2 Sparse representation of the auto-correlated signal  

Signal y (Nx1) will have a sparse expression on the represent basis £ (N x N), N is the data length of signal y 

[18]:  

Y= £k                                                                                                                               (7)

  

Where y=autocorrelated signal  

           £ = represent basis  

           k = sparse represent of original signal  

 

4.3  Acquire the measurement value by measurement matrix 

Use the measurement matrix Φ (M x N) to acquire the measurement value A, M is the measurement number 

[18]: 

 

 A=y€=€£k                                                                                                                            (8)    

                                                                                               

Where € = measurement matrix  

 

4.4  Reconstruction of signal  

Choose an adaptive algorithm to reconstruct k depending on the known £, €and A.  

Using the inverse matrix of £ to reconstruct the original signal y*[18]: 

 

Y* =                                                                                                                                (9)  

 

V. SIMULATIONS 

 

In this section, we evaluate the performance of compressive data gathering in sensor networks. After providing 

the simulation setup the proposed scheme is analysed for Average Relative Error.  The simulation is performed 

in MATLAB 2011b.The proposed scheme gives the low ARE when sensors are corrupted by noise. 
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5.1  SIMULATION SETUP 

 

5.1.1  Initialization of Parameters  

There are some Network parameters are shown in table 4.1.This table gives the value of different parameters 

like Sampling frequency, number of nodes, number of spikes of original signal etc. 

 

                                                  Table 1 Network Parameters [22] 

Parameter Description Value 

Fs Sampling Frequency 100MHz 

N Number of Sensor Nodes 900 

k 
Number of spikes of original 

signal 
10 

c constant 2.5 

M Number of measurements 80 

x Original signal random 

N Noise 10db,20db 

 

 

5.2 VALIDATION OF RESULTS 

 

5.2.1 Average Relative Error (ARE) 

Let Xi and Xi^ be the true and the estimated reading, respectively. The average relative error (ARE) is defined 

to be the average of the ratio between the difference of the estimated reading and the true reading vs. the true 

reading [22]: 

 

ARE= /Xi÷V                                                                   (10) 

 

Where Xi = the true original signal,  

            Xi^ = the estimated signal, 

            V = No of iterations 

The simulations results of proposed scheme, CS, Entropy and Wavelet are compared in the terms of Average 

Relative Error with respect to the Signal to Noise Ratio as shown in Fig.5.5.proposed scheme has shown much 

improvement in reducing ARE as compare to CS, Entropy and Wavelet. We report our simulation results, with 

each representing an average over 50 runs. 
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Fig.4 Comparison of all Schemes for ARE 

 

5.2.2           Aggregated results for overall improvement for ARE 

The comparison table 5.1 shows the overall comparison between Proposed Scheme, CS,  

Entropy and Wavelet in terms of ARE. 

 Table 2 Comparison of all Schemes for ARE 

 

Added 

Noise 

ARE 

Proposed Scheme CS Entropy Wavelet 

No Noise 0.0345 0.0380 0.4700 0.6000 

20 db 0.1185 0.1400 0.7000 0.9000 

10 db 0.3188 0.3500 0.9500 1.3000 

 

 

VI. CONCLUSION     

The Proposed Scheme combines the traditional sampling and compression, based on it, the sparse signal will be 

sampled beyond the constraints of the Nyquist theory. After running the simulation in MATLAB, the proposed 

scheme is analysed for ARE by adding 20 db, 10 db and no noise to the signal and it is found that ARE is 

reduced between recovered signal and the original signal by 15.36%, 8.92% and 9.22% respectively, as 

compared to Compressive Sensing (CS) Scheme. So the Simulation part reduces the amount of samples and 

keeps the main information of the signal successfully. So it can be concluded on the basis of results that 

introducing the Autocorrelation function in Compressive Data Gathering scheme reduces the Average Relative 

Error. Future work includes deriving variations of the proposed strategy, testing, and comparing them with other 

well-known methods on real-world data sets. 

 

   
0 

0.2 

0.4 

0.6 

   ARE   0.8     

1 

1.2 

1.4 

   0.0345 0.0380 0.4700 0.6000              0.1185 0.1400 0.7000 0.9000              0.3188 0.3500 0.9500 1.3000 

 No Noise                                                 20 db                                            10 db 

 

 

SNR

  

  

  
Proposed scheme 

CS 

Entropy 

Wavelet 



International Journal of Advanced Technology in Engineering and Science                  www.ijates.com  

Volume No.02, Issue No. 07, July 2014                                                       ISSN (online): 2348 – 7550 

 

101 | P a g e  
 

REFERENCES 
 

[1]E.Candes, J.Romberg, and T.Tao ―Robust  uncertainty principles: Exact signal reconstruction from highly 

incomplete frequency information,‖ IEEE Transactions on Information Theory, vol. 52, No. 2, pp. 489–509, 

Feb. 2006. 

[2]Andreas M. Tillmann and Marc E. Pfetsch, ―The Computational Complexity of the Restricted Isometry 

Property, the Nullspace Property, and Related Concepts in Compressed Sensing.‖  Optimization and Control, 

Nov 2013. 

[3]Massoud Babaie-Zadeh, Christian Jutten, and  Hossein Mohimani, ―On the error of estimating the sparsest 

solution of underdetermined linear systems‖. IEEE Transaction on Information Theory, vol. 57, No. 12, pp. 

7840-7855, December 2011. 

[4]Thanh Dang, Nirupama  Bulusu, and Wu-chi Feng, ―Robust Data Compression for Irregular Wireless Sensor 

Networks Using Logical Mapping‖. Hindawi Publishing Corporation,ISRN Sensor Networks, Vol. 2013,  

Article ID  253257, March 2013. 

[5]Leslie Greengard ,June-Yub Lee, ―Accelerating the Nonuniform  Fast  Fourier Transform‖, Society for 

Industrial and Applied Mathematics, Vol. 46, No. 3, pp. 443–454, 2004. 

[6]Xi Xu, Rashid Ansari, Ashfaq Khokhar, ―Power-efficient  Nonuniform 2-D  Fourier Analysis Using 

Compressive Sensing in WSN‖. IEEE Wireless Communications and Networking Conference,  pp. 4381 – 

4386,  ISSN.1525-3511,  April 2013. 

[7]Jeffrey A. Fessler, Bradley P. Sutton, ―Nonuniform  Fast  Fourier  Transforms  Using  Min-Max  

Interpolation‖. IEEE  Transactions  on  Signal  Processing, Vol. 51, No. 2,  pp.560-574, Feb 2003. 

[8]Alexander  Jung, Georg  Tauböck,and  Franz  Hlawatsch, ―Compressive  Spectral Estimation for  

Nonstationary  Random  Processes‖. IEEE Transactions on information Theory, Vol. 59, No.5, pp.3117-

3137, May 2013. 

[9]Ronald A. DeVore, ―Deterministic constructions of compressed sensing matrices‖. J. of Complexity, Vol. 23, 

pp. 918 - 925, August 2007. 

[10]Kanke Gao, Stella N. Batalama, Dimitris A. Pados, and Bruce W. Suter, ―Compressive Sampling with 

Generalized Polygons". IEEE Transactions on Signal Processing, Vol. 59, No. 10,  pp.4759-4766, Oct 

2011. 

[11]Zai Yang, Cishen Zhang, and Lihua Xie, ―Robustly  Stable  Signal  Recovery in Compressed Sensing With 

Structured Matrix Perturbation‖. IEEE Transactions on Signal Processing, Vol. 60, No. 9, pp.4658-4671, 

Sep 2012. 

[12]Chong Luo , Feng Wu, Jun Sun and Chang Wen Chen, ―Efficient measurement generation and pervasive 

sparsity for compressive data gathering‖.IEEE Transactions on Wireless Communications, Vol.9 , No.12 , 

pp.3728-3733, Oct 2010. 

[13]C.Caione, D.Brunelli and L.Benini, ―Distributed compressive sampling for lifetimeoptimization in dense 

wireless sensor networks‖. IEEE  Transactions on Industrial Informatics , Vol.8 ,  No.1 , pp.30-40, Oct 

2011 . 

[14]S.K.Narang, G.Shen and A.Ortega, ―Unidirectional graph-based wavelet transforms for efficient data 

gathering in sensor networks‖. IEEE International Conference on Acoustics Speech and Signal Processing, 

pp, 2902 - 2905 ISSN, 1520-6149, March 2010. 

[15]Liu Xiang , Jun Luo ―Compressed data aggregation for energy efficient wireless sensor networks‖. 8th 

Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and 

Networks, pp, 46 - 54 ISSN, 2155-5486, June 2011. 

[16]Qing Ling , Zhi Tian ―Decentralized Sparse Signal Recovery for Compressive Sleeping Wireless Sensor 

Networks‖. IEEE Transactions on Signal Processing, Vol. 58, No. 7, pp.3816-3827, July 2010. 

[17]C.Caione, D.Brunelli and L.Benini, ―Compressive Sensing Optimization for Signal Ensembles in WSN‖. 

IEEE Transactions on Industrial Informatics , Vol.10, No.1 , pp.382-392 , Feb 2014 . 

[18]Yu Tang, Bowu  Zhang , Tao Jing , Dengyuan Wu, and  Xiuzhen Cheng, “RobustCompressive Data 

Gathering in  Wireless Sensor Networks‖.IEEE Transactions on Wireless  Communications, Vol.12 , No.6 , 

June 2013 

[19]William J Palm, ―Introduction to MATLAB‖.Science Engineering & Math Publication ,pp.1-20 , 2011 . 
 
 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chong%20Luo.QT.&searchWithin=p_Author_Ids:37279719000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Feng%20Wu.QT.&searchWithin=p_Author_Ids:38194069700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jun%20Sun.QT.&searchWithin=p_Author_Ids:38195821500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chang%20Wen%20Chen.QT.&searchWithin=p_Author_Ids:38195649800&newsearch=true
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5595724
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5595724
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5595724
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6133473
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5970760
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5970760
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5970760
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Qing%20Ling.QT.&searchWithin=p_Author_Ids:37397418600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhi%20Tian.QT.&searchWithin=p_Author_Ids:37278997500&newsearch=true
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6133473

