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ABSTRACT

Fast Active Queue Management Scalable Transmission Control Protocol, /@ new TCP congestion control
algorithm is designed and implemented for high-speed long-latency networksis, describedsin thisspaper. The
current TCP implementation addresses the four difficulties at large mindows. The‘approach is taken by FAST
TCP to address these four difficulties.The architecture and summaryof some of the algorithms implemented. Its
equilibrium and stability properties are also characterizedd The experimental setup in terms_offthroughput,
fairness, stability, and responsiveness is evaluated.
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I. INTRODUCTION

Congestion control is a distributed algorithm, to share network resources. It is important in the situations where
the availability of resources and the set of competing users vary over time unpredictably. These constraints,
unpredictable supply, demandyand efficient operation, leads tofeedback control. The approach, where traffic
sources dynamically adapt their rates to,congestion in their paths. On the internet this is performed by the
Transmission Control Protocol (TCP) in source and,destination computers involved in data transfers.

The congestion control algorithm inithe elirrent TCR, which is referred as Reno in this paper, was developed in
1988.And itshas gone through several enhancements. It has performed remarkably well. This is generally
believedsto have prevented severe congestion as the internet scaled up by six orders of magnitude in size, speed,
loaddand connectivity. The following four difficulties will contribute to the poor performance of TCP Reno in
networks with large bandwidth and delay products.

1. At the packet,level, linearincrease by one packet per round- trip time (RTT) is too slow, and multiplicative
decrease per loss event is too drastic.

2. At the flow level;"maintaining large average congestion windows requires an extremely small equilibrium loss
probability.

3. At the packet level, oscillation in congestion window is unavoidable because TCP uses a binary congestion
signal (packet loss).

4. At the flow level, the dynamics is unstable, leading to severe oscillations that can only be reduced by the
accurate estimation of packet loss probability and a stable design of the flow dynamics.

I1. PROBLEMS AT LARGE WINDOWS

A congestion control algorithm can be designed at two levels. The macroscopic flow-level design aims to

achieve the high utilization, low queuing delay and loss, fairness, and stability. The packet-level design
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implements these flow level goals within the constraints imposed by end-to-end control [2].
2.1 Packet and flow level modelling
The congestion avoidance algorithm of TCP Reno and its variants have the form of AIMD. The pseudo code

for window adjustment is:

1
Ack:w =w +—
w

1
Lossiw=w — Ew

This is a packet-level model, but it induces certain flow-level properties such hput, fairness, and
stability.
These properties can be understood with a flow-level model of the AIMD alg window

w;(t) of source i increases by 1 packet per RTT, and decreases per unit tilme by

1 4
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Where
Ti (t) is the round-trip time, and q; (t) is the (del w; (t)/3 is the peak

window size that gives the “average” window D is:
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2.2 Equilibrium Problem

The equilibrium problem at the evel isexpressed. The end-to-end loss probability must be exceedingly

small to sustain a large window e, equilibrium difficult to maintain in practice, as bandwidth-

f TCP Reno lie in its design at both the packet and flow levels. At the
signal necessarily leads to oscillation, and the parameter setting in

-delay product increases. At the flow level, the system dynamics is
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based algorithm, where congestion window is adjusted based on the estimated loss probability in an attempt to
stabilize around a target value given by. Its operating point is T as shown in the figure, near the overflowing
point. This approach eliminates the oscillation due to packet level AIMD, but two difficulties remain at the
flow level [1], [2], and [3].

I11. LOSS BASED APPROACH

The problems at the packet and flow levels of HSTCP and STCP are described in this section [2].

3.1 HSTCP

The design of HSTCP proceeded almost in the opposite direction to that of TCP Reno. The system equilibrium

at the flow-level is first designed, and then, the parameters of the packet-level imp ation are determined
to implement the flow-level equilibrium.
The first design choice decides the relation between window w; and en ility gi in

equilibrium for each source i.

_ 0.0789
9= wl—l'!ﬂ"lsl
The second design choice determines how to achiev ilibri i cket level
implementation. The algorithm is AIMD, as in TCP A b(w;) that vary with

source i’s current window w;. The pseudo code for
alw)

W

Ack: w = w+
Loss:w = w — blw)w
The design of a(w;) and b(w;) functions is as follows, fi discussion of the single flow behavior, this

algorithm yields an equilibrium where the following holds.

E[“J[} (1 - h{“"['}) + W

2

e loss prohability ¢; and the window w; are not in equilibrium, one

elation instantaneously. The relation defines a family of a(w;) and b(w;)

Ack:w =w
Lossiw=w—
For some constants 0/<'a, b < 1. Note that in each round trip time without packet loss, the window increases
by a multiplicative factor of a. the recommended values in are a = 0.01 and b — 0.125.

As for HSTCP, the flow level model of Scalable TCP is,

aw;(t) 2h
T. 2-b

Where x;(t)=w;(t)/T;. In equilibrium, we have

w; =

a0 (Ehg; (8 )w; (E)
g w= 2 (1- D)=,

This implies that, on average, there are p loss events per round trip time, independent of the equilibrium

window size.
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We can rewrite in the form of with the gain and marginal utility functions.

aw;
ke ':WL', TL:] = TL

u;(w;, T;) = HL
L

IV. DELAY BASED APPROACH
The delay based approach to address the four difficulties at large window sizes is described in this section.
4.1 Motivation
As shown above, the congestion windows in Reno, HSTCP and STCP all evolve according to:

At
w,(8) = (0. (1 _:—E
where k;(t)=k;(w;(t), Ti(t)) and u;(w;(t),Ti(t)). Moreover, the dynamics of FAST TCP also takes the same form.
They differ only in the choice of the gain function.The marginal utility functionti(w;,T;)and the end\ to end
congestion measure qi. At the flow level, three design decisions are made, Which are as follows.
ki(w;, T;): the choice of the gain function ki determines thé dynamic ‘properties such as stability and
responsiveness, but does not affect the equilibrium propertieS{1],'[2].
ui(w;,T;): The choice of the marginal utility function ui®mainly determinés equilibrium properties such as the
equilibrium rate allocation and its fairness.
gi: In the absence of explicit feedback, the ehaicenof congestion measure is, limited to loss probability or
queueing delay. The dynamics of qi(t) is determinedat links.
This common model can be interpreted as follows. The goal at,the flow level is to equalize marginal utility u;(t)
with the end to end measure of congestion q;(t). This interpretation immediately suggests an equation based
packet level implementation where both the direction and size of'the'window adjustment w;(t) are based on the
difference between the ration q(t)/ui(t) and, the target of 1. Unlike the approach taken by Reno, HSTCP, and
STCP, this approach eliminates ‘packet level osCillations, due to the binary nature of congestion signal. It
however requires(the explicit estimationof the end {0 end congestion measure q;(t).
4.2 Implementation strategy
The delay based appreachy, with proper flow and packet level designs, can address the four difficulties of Reno
at largewindows [1], [2],"anch[3]. First, by explicitly estimating how far the current state g;(t)/u;(t) is from the
equilibriumyvalue of 1, our scheme can drive the system rapidly, yet in a fair and stable manner, toward the
equilibrium=The,window adjustment is small when the current state is close to equilibrium and large otherwise,
independent of where, the equilibrium is , as illustrated in figure 1 (b). This is in stark contrast to the approach
taken by Reno, HSTCP, and STCP, where window adjustment depends on just the current window size and is
independent of where the current state is with respect to the target. Like the equation based scheme in this
approach avoid the problem of slow increase and drastic decrease in Reno, as the network scales up.
Second, by choosing a multi bit congestion measure, this approach eliminated the packet level oscillation due to
binary feedback, avoiding Reno’s third problem.
Third, using queueing delay as the congestion measure g;(t) allows the network to stabilize in the region below
the overflowing point, around point F in Figure 2(b), when the buffer size is sufficiently large. Stabilization at
this operating point eliminates large queueing delay and unnecessary packet loss. More importantly, it makes

room for buffering mice traffic. Finally, to avoid the fourth problem of Reno, the window control algorithm
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must be stable, in addition to being fair and efficient, at the flow level. The use of queueing delay as a
congestion measure facilitates the design as queueing delay naturally scales with capacity.

The design of TCP congestion control algorithm can thus be conceptually divided into two levels and
systematically implemented [1], [2], [5], and [6]:

At the packet level, the design must deal with issues that are ignored by the flow-level model or modelling
assumptions that are violated in practice, in order to achieve these flow level goals. These issues include
burstiness control, loss recovery, and parameter estimation.

The implementation proceeds in following three steps.

1. Determine various system components

2. Translate the flow level design into packet level algorithms

3. Implement the packet level algorithms in a specific operating system.

V. ARCHITECTURE AND ALGORITHMS

We separate the congestion control mechanism of TCP into four omponents in following figure. These four

components are functionally independent so that they can be designed separately and upgraded asynchronously.

Data Window Burstiness
Control Control Control
Estimation

TCP Protocol Processing

The data control component determings which packets to transmit, window control determined how many
packets to transmityand burstiness \control determinespwhen to transmit these packets [5]. These decisions are
made base d0n jinformation providéd by the estimation component. Window control regulated packet
transmission at the'RT B, timescale, while burstiness control works at a smaller timescale.

In thedfollowing subsections, we providegsan overview of these components and some of the algorithms
implemented in our currentiprototype. An initial prototype that included most the features discussed here was
demonstrated:

5.1 Estimation

This component“providesy estimations of various input parameters to the other three decision making
components. It computes two pieces of feedback information for each data packet sent [3]. When a positive
acknowledgment is received, it calculates the RTT for the corresponding data packet and updates the average
queueing delay and the minimum RTT. When a negative acknowledgement is received, it generates a loss
indication for this data packet to the other components. The estimation component generates both a multi bit
queueing delay sample and a one bit loss or no loss sample for each data packet.

5.2 Data Control

Data control selects the next packet to send from three pools of candidates: new packets, packets that are
deemed lost, and transmitted packets that are not yet acknowledged. When there is no loss, new packets are sent

in sequence as old packets are acknowledged. This is referred to as self-clocking or ack clocking, to which we
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will return below. During loss recovery, a decision on how to mix packets from the three candidate pools [1],
[2], [3] and [5].

5.3 Window Control

The window control component determines congestiOon window based on congestion information queueing
delay and packet, loss, provided by the estimation component. A key decision in our design that departs from
traditional TCP design is that the same algorithm is used for congestion window computation independent of the
state of the sender. Our congestion control mechanism reacts to both queueing delay and packet loss. Under
normal network conditions, fast periodically updates the congestion window based/on the average RTT and
average queueing delay provided by the estimation component, according to

bossATT

w = min 2w, (1 — W+, (———w + a(w. gdelgx))}

Where r (0, 1) baseRTT is the minimum RTT observed so far, and delagiis the end‘to end queteing delay. In our
current implementation, congestion window changes over two RTAFS it is updated in one RTT and frozen in the
next. The update is spread out over the first RTT in a way such that congestion,window is'ag_ more_than doubled
ineach RTT.

5.4 Burstiness Control

The burstiness control component smooths outdtransmission of packets in a fluid dike manner to track the
available bandwidth. It is particularly important in_networks with large bandwidth delay products, where large
bursts of packets may create long queues and even massiveylosses in either networks or end hosts [2].

TCP Reno uses self-clocking to regulate burstiness by transmitting a new packet only when an old congestion
window is large, self-clocking is not sufficient to control burstinessyunder there scenarios. First lost or delayed
acks can often lead to a single ackepacknowledging a large number of outstanding packets. In this case, self-
clocking will allow the transmission of:a large,burst of packets. Second, acks may arrive in a burst at a sender
due to queueing ofsacks in the reverse path«f the'connection, again triggering a large burst of outgoing packets.
Third, in netwarks with large bandwidth delay product congestion window can be increased by a large amount
during transient, e.g., inyslow start. This breaks packet conservation and self-clocking, and allows a large burst
of pacKets to be sent.

541 Burstiness Reduction

Congestion window regulate packet transmission on the RTT timescale. We may think of the ratio of window to
RTT as the targetithroughput in‘'each RTT. At large window size, e.g., a window of 14000 packets over a RTT
of 180ms, the instantaneous transmission rate can far exceed the target throughput when acks are compressed,
delayed, or lost. The Burstiness reduction mechanism controls the transmission rate within each round trip time
by limiting bursts, as follows.

We define the instantaneous burstiness, B9t), at time t as the extra backlog introduced during the RTT before t:

'l-'l-'[':.t_]

T; (£)

B;(t) = max (W(s,t) — (t—sh
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Figure 4.1: Window Pacing in FAST TCP

5.4.2 Window pacing
Window pacing tries to increase the congestion
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Figure 5: From flow-level design to implementation.

Since TCP is an event-based protocol, our control actions should be triggered by the occurrence of various

events. Hence, we need to translate our flow-level algorithms into event-based packet-level algorithms [6].
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There are four types of events that FAST TCP reacts to: on the reception of an acknowledgement, after the
transmission of packet at the end of an RTT, and for each packet loss.

Figure 5 presents an approach to turn the high-level design of a congestion control algorithm into
implementation. First, an algorithm is designed at the flow-level and analyzed to ensure that it meets the high-

level objectives such as fairness and stability [3], [4].

VI. EQUILIBRIUM AND STABILITY OF WINDOW CONTROL ALGORITHM

In this section we provide a partial analytical evaluation of FAST TCP. We present a model of the window
algorithm. We show that in equilibrium, the vectors of source windows and link queugihg delays are the unique
solutions of a pair optimization problems. This completely characterizes thegnetwork equilibrium properties
such as throughput, fairness and delay. We also analyze the stability of the control algorithm_is locally stable.

Extensive experiments in this section shows its stability in the presence ef feedback delay [3], [4],[5], and [6].

VIlI. PERFORMANCE STUDY OF FAST TCP

7.1 Topology and Background Traffic

As a baseline topology, we consider many flows sharing a single cefngested link as [shown inFig. 7.1. The
bandwidth of this link is 1.5 Mb/s and it has propa@ation delay 10ms. Theadecess links have capacity 2 Mb/s and
delay 10ms, so that the minimum round-tripdimeforflows is approximately 60msf[1], [3], and [4]. The queue
size is set to 4 times the delay-bandwidthproduct Each simulation run lasts more than 20 s. The ns-2
implementation of FAST TCPis derived by modifying TEP/Reno. To explore the dynamics of FAST TCP, we

use constant rate flows with equal times.

1.5Mbps

Forall lirks:
10 ms delay
DropTal Queues

Figure 7.1: Topology
While not representative of actual traffic patterns, thisscenario is motivated by the need to systematically
explore FAST TCP's"ability to utilize theexcess bandwidth and to study its transparency and fairness properties
in the presenceof dynamic background traffic [3], [4]. In these experiments, the available bandwidth

alternatesbetween the full linkscapacities of 1.5 Mb/s when the periodic source is idle.

7.2 Simulation Experiments

We now use simulation based approach to evaluate the performance of FAST TCP in a variety of scenarios,
including FTP, 'square-wave', and other background traffic patterns,with long and short-lived TCP flows on
bottleneck network topology [3]. Our goal is toexplore FAST TCP's behavior in both artificial and realistic
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network environments. Weevaluate FAST TCP’s impact on the throughput, fairness, and stability and

responsiveness characteristics of competing cross-traffic [1].

7.2.1Throughput

The average aggregate throughput for the intervalis defined [1], [2]. The system throughput or aggregate
throughput is the sum of the data rates that are delivered to all terminals in a network [6]. Throughput is
essentially synonymous to digital bandwidth consumption; it can be analyzed mathematically by means
of queueing theory, where the load in packets per time unit is denoted arrival rate A, andthe throughput in

packets per time unit is denoted departure rate .

Xgraph

7.2.2Responsiveness

The responsiveness index mea
join or depart. The definition of res
(asopposed to the running averag nethroughput) stays within 10% of its equilibrium value is
unsuitable for TCPprotocols that s

xgraph xgraph
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xgraph xgraph

Figure 7.3Responsiveness

7.2.3Fairness
In this simulation we observe FAST TCPfairness property. T hole bandwidth is madeavailable/to FAST

ess: Jain’s fairness index for the

Xgraph

Figure 7.4Fairness
7.2.4 Stability
Specifically, as the number of competing sources in a network, stability become worse for the loss — based
protocols, oscillation in both congestion windows and queue size are more severe all loss base protocols.
Packets loss was more severe. The performance of the FAST TCP did not d grade in any significant way [2],
[3]. Connection sharing the link achieved very similar rates. There was reasonably stable queue at all times, with
little packets loss and high link utilization. Intra protocols fairness is shown in table 4, with no significant
variations in the fairness of FAST TCP.
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Figure 7.5Stability

VIIl. CONCLUSION
We have described an alternative congestion control algorithm, FASTTEP, which addresses the four main
problems of TCP Reno in networks with high capacities and large lateneies. FAST ICP has adlog utility
function and achieves weighted proportional fairness [1],43]. lts\window adjustment is equatien based, under
which the network moves rapidly towards the equilibrium when'the eurrent state is far away and slows down
when it approaches the equilibrium. FAST TCP uses queueing delay,‘in addition to packetloss, as a congestion
signal. Queueing delay provides a finer measuré of congestion and scales naturally with network capacity [4].
We have presented experimental resultsfof our first Linux prototype and compared its performance with TCP
Reno, HSTCP and STCP .We have evaluated these algarithms not only in static environments , but also in
dynamic environments where flows come and go ; and not enlyain tesms of end to end throughput , but also
queue behavior in network . Inpthis experiments, HSTCP and STCP achieved better throughput and link
utilization than Reno, but their congestion, window and queue executed significant oscillations .TCP Reno
produced less oscillations, but at'the cost of lowernlink utilization when sources departed. FAST TCP, on the
other hand, cofsistently out perferm$ these pratocols in terms of throughput fairness, stability and

responsiveness.
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