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ABSTRACT  

Fast Active Queue Management Scalable Transmission Control Protocol, a new TCP congestion control 

algorithm is designed and implemented for high-speed long-latency networksis described in this paper. The 

current TCP implementation addresses the four difficulties at large windows. The approach is taken by FAST 

TCP to address these four difficulties.The architecture and summaryof some of the algorithms implemented. Its 

equilibrium and stability properties are also characterized. The experimental setup in terms of throughput, 

fairness, stability, and responsiveness is evaluated. 
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I.  INTRODUCTION 

Congestion control is a distributed algorithm to share network resources. It is important in the situations where 

the availability of resources and the set of competing users vary over time unpredictably. These constraints, 

unpredictable supply, demand and efficient operation, leads to feedback control. The approach, where traffic 

sources dynamically adapt their rates to congestion in their paths. On the internet this is performed by the 

Transmission Control Protocol (TCP) in source and destination computers involved in data transfers. 

The congestion control algorithm in the current TCP, which is referred as Reno in this paper, was developed in 

1988.And it has gone through several enhancements. It has performed remarkably well.This is generally 

believed to have prevented severe congestion as the internet scaled up by six orders of magnitude in size, speed, 

load and connectivity. The following four difficulties will contribute to the poor performance of TCP Reno in 

networks with large bandwidth and delay products. 

1. At the packet level, linear increase by one packet per round- trip time (RTT) is too slow, and multiplicative 

decrease per loss event is too drastic. 

2. At the flow level, maintaining large average congestion windows requires an extremely small equilibrium loss 

probability. 

3. At the packet level, oscillation in congestion window is unavoidable because TCP uses a binary congestion 

signal (packet loss). 

4. At the flow level, the dynamics is unstable, leading to severe oscillations that can only be reduced by the 

accurate estimation of packet loss probability and a stable design of the flow dynamics. 

II. PROBLEMS AT LARGE WINDOWS 

A congestion control algorithm can be designed at two levels. The macroscopic flow-level design aims to 

achieve the high utilization, low queuing delay and loss, fairness, and stability. The packet-level design 
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implements these flow level goals within the constraints imposed by end-to-end control [2].  

2.1 Packet and flow level modelling 

The congestion avoidance algorithm of TCP Reno and its variants have the form of AIMD. The pseudo code 

for window adjustment is: 

 

 

 

This is a packet-level model, but it induces certain flow-level properties such as throughput, fairness, and 

stability. 

These properties can be understood with a flow-level model of the AIMD algorithm [1], [4], [5]. The window 

wi(t) of source i increases by 1 packet per RTT, and decreases per unit time by  

 

 

Where 

Ti (t) is the round-trip time, and qi (t) is the (delayed) end-to-end loss probability. Here, 4wi (t)/3 is the peak 

window size that gives the “average” window of wi(t). Hence, a flow-level model of AIMD is: 

 

 

2.2 Equilibrium Problem 

The equilibrium problem at the flow level isexpressed. The end-to-end loss probability must be exceedingly 

small to sustain a large window size, making the equilibrium difficult to maintain in practice, as bandwidth-

delay product increases [1], [2], and [4]. 

2.3 Dynamic Problems 

The causes of the oscillatory behavior of TCP Reno lie in its design at both the packet and flow levels. At the 

packet level, the choice of binary congestion signal necessarily leads to oscillation, and the parameter setting in 

Reno worsens the situation as bandwidth-delay product increases. At the flow level, the system dynamics is 

unstable at large bandwidth-delay products. These must be addressed by different means, as we now elaborate. 

Following figure illustrates the operating points chosen by various TCP congestion control algorithms, using 

the single link single-flow scenario. It also shows queueing delay as a function of window size.  

 

 

 

 

 

 

 

 

Congestion window can be stabilized only if multi bit feedback is used. This approach is taken by the equation 
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based algorithm, where congestion window is adjusted based on the estimated loss probability in an attempt to 

stabilize around a target value given by. Its operating point is T as shown in the figure, near the overflowing 

point. This approach eliminates the oscillation due to packet level AIMD, but two difficulties remain at the 

flow level [1], [2], and [3]. 

III. LOSS BASED APPROACH 

The problems at the packet and flow levels of HSTCP and STCP are described in this section [2]. 

3.1 HSTCP 

The design of HSTCP proceeded almost in the opposite direction to that of TCP Reno. The system equilibrium 

at the flow-level is first designed, and then, the parameters of the packet-level implementation are determined 

to implement the flow-level equilibrium. 

The first design choice decides the relation between window wi and end to end loss probability qi in 

equilibrium for each source i. 

 

The second design choice determines how to achieve the equilibrium defined through packet level 

implementation. The algorithm is AIMD, as in TCP Reno, but with parameters a(wi) and b(wi) that vary with 

source i’s current window wi. The pseudo code for window adjustment is, 

 

 

The design of a(wi) and b(wi) functions is as follows, from a discussion of the single flow behavior, this 

algorithm yields an equilibrium where the following holds. 

 

 

This motivates the design that, when the loss probability qi and the window wi are not in equilibrium, one 

chooses a(wi) and b(wi) to force the relation instantaneously. The relation defines a family of a(wi) and b(wi) 

functions. Picking either one of a(wi) and b(wi) function uniquely determines the other function.  

3.2 Scalable TCP 

The congestion avoidancealgorithm of STCP is MIMD, 

 

 

For some constants 0 < a, b < 1.  Note that in each round trip time without packet loss, the window increases 

by a multiplicative factor of a. the recommended values in are a = 0.01 and b – 0.125.  

As for HSTCP, the flow level model of Scalable TCP is, 

 

Where xi(t)=wi(t)/Ti. In equilibrium, we have 

) = ᵨ 

This implies that, on average, there are p loss events per round trip time, independent of the equilibrium 

window size.  
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We can rewrite in the form of with the gain and marginal utility functions. 

 

 

IV. DELAY BASED APPROACH 

The delay based approach to address the four difficulties at large window sizes is described in this section. 

4.1 Motivation 

As shown above, the congestion windows in Reno, HSTCP and STCP all evolve according to: 

 

where ki(t)=ki(wi(t),Ti(t)) and ui(wi(t),Ti(t)). Moreover, the dynamics of FAST TCP also takes the same form. 

They differ only in the choice of the gain function.The marginal utility functionui(wi,Ti)and the end to end 

congestion measure qi. At the flow level, three design decisions are made, which are as follows. 

ki(wi,Ti): the choice of the gain function ki determines the dynamic properties such as stability and 

responsiveness, but does not affect the equilibrium properties [1], [2]. 

ui(wi,Ti): The choice of the marginal utility function ui mainly determines equilibrium properties such as the 

equilibrium rate allocation and its fairness. 

qi: In the absence of explicit feedback, the choice of congestion measure is limited to loss probability or 

queueing delay. The dynamics of qi(t) is determined at links. 

This common model can be interpreted as follows.The goal at the flow level is to equalize marginal utility ui(t) 

with the end to end measure of congestion qi(t). This interpretation immediately suggests an equation based 

packet level implementation where both the direction and size of the window adjustment wi(t) are based on the 

difference between the ration qi(t)/ui(t) and the target of 1. Unlike the approach taken by Reno, HSTCP, and 

STCP, this approach eliminates packet level oscillations due to the binary nature of congestion signal. It 

however requires the explicit estimation of the end to end congestion measure qi(t). 

4.2 Implementation strategy 

The delay based approach, with proper flow and packet level designs, can address the four difficulties of Reno 

at large windows [1], [2], and [3]. First, by explicitly estimating how far the current state qi(t)/ui(t) is from the 

equilibrium value of 1, our scheme can drive the system rapidly, yet in a fair and stable manner, toward the 

equilibrium. The window adjustment is small when the current state is close to equilibrium and large otherwise, 

independent of where the equilibrium is , as illustrated in figure 1 (b). This is in stark contrast to the approach 

taken by Reno, HSTCP, and STCP, where window adjustment depends on just the current window size and is 

independent of where the current state is with respect to the target. Like the equation based scheme in this 

approach avoid the problem of slow increase and drastic decrease in Reno, as the network scales up. 

Second, by choosing a multi bit congestion measure, this approach eliminated the packet level oscillation due to 

binary feedback, avoiding Reno’s third problem. 

Third, using queueing delay as the congestion measure qi(t) allows the network to stabilize in the region below 

the overflowing point, around point F in Figure 2(b), when the buffer size is sufficiently large. Stabilization at 

this operating point eliminates large queueing delay and unnecessary packet loss. More importantly, it makes 

room for buffering mice traffic. Finally, to avoid the fourth problem of Reno, the window control algorithm 
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must be stable, in addition to being fair and efficient, at the flow level. The use of queueing delay as a 

congestion measure facilitates the design as queueing delay naturally scales with capacity. 

The design of TCP congestion control algorithm can thus be conceptually divided into two levels and 

systematically implemented [1], [2], [5], and [6]: 

At the packet level, the design must deal with issues that are ignored by the flow-level model or modelling 

assumptions that are violated in practice, in order to achieve these flow level goals. These issues include 

burstiness control, loss recovery, and parameter estimation. 

The implementation proceeds in following three steps. 

1. Determine various system components 

2. Translate the flow level design into packet level algorithms 

3. Implement the packet level algorithms in a specific operating system. 

V. ARCHITECTURE AND ALGORITHMS 

We separate the congestion control mechanism of TCP into four components in following figure. These four 

components are functionally independent so that they can be designed separately and upgraded asynchronously. 

 

The data control component determines which packets to transmit, window control determined how many 

packets to transmit, and burstiness control determines when to transmit these packets [5]. These decisions are 

made base d on information provided by the estimation component. Window control regulated packet 

transmission at the RTT timescale, while burstiness control works at a smaller timescale.  

In the following subsections, we provide an overview of these components and some of the algorithms 

implemented in our current prototype. An initial prototype that included most the features discussed here was 

demonstrated.  

5.1 Estimation 

This component provides estimations of various input parameters to the other three decision making 

components. It computes two pieces of feedback information for each data packet sent [3]. When a positive 

acknowledgment is received, it calculates the RTT for the corresponding data packet and updates the average 

queueing delay and the minimum RTT. When a negative acknowledgement is received, it generates a loss 

indication for this data packet to the other components. The estimation component generates both a multi bit 

queueing delay sample and a one bit loss or no loss sample for each data packet.  

5.2 Data Control 

Data control selects the next packet to send from three pools of candidates: new packets, packets that are 

deemed lost, and transmitted packets that are not yet acknowledged. When there is no loss, new packets are sent 

in sequence as old packets are acknowledged. This is referred to as self-clocking or ack clocking, to which we 
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will return below. During loss recovery, a decision on how to mix packets from the three candidate pools [1], 

[2], [3] and [5]. 

 

5.3 Window Control 

The window control component determines congesti0on window based on congestion information queueing 

delay and packet, loss, provided by the estimation component. A key decision in our design that departs from 

traditional TCP design is that the same algorithm is used for congestion window computation independent of the 

state of the sender. Our congestion control mechanism reacts to both queueing delay and packet loss. Under 

normal network conditions, fast periodically updates the congestion window based on the average RTT and 

average queueing delay provided by the estimation component, according to 

w+ᵧ (  

Where r (0, 1) baseRTT is the minimum RTT observed so far, and delay is the end to end queueing delay. In our 

current implementation, congestion window changes over two RTTs it is updated in one RTT and frozen in the 

next. The update is spread out over the first RTT in a way such that congestion window is no more than doubled 

in each RTT. 

5.4 Burstiness Control 

The burstiness control component smooths out transmission of packets in a fluid like manner to track the 

available bandwidth. It is particularly important in networks with large bandwidth delay products, where large 

bursts of packets may create long queues and even massive losses in either networks or end hosts [2]. 

TCP Reno uses self-clocking to regulate burstiness by transmitting a new packet only when an old congestion 

window is large, self-clocking is not sufficient to control burstiness under there scenarios. First lost or delayed 

acks can often lead to a single ack acknowledging a large number of outstanding packets. In this case, self-

clocking will allow the transmission of a large burst of packets. Second, acks may arrive in a burst at a sender 

due to queueing of acks in the reverse path of the connection, again triggering a large burst of outgoing packets. 

Third, in networks with large bandwidth delay product congestion window can be increased by a large amount 

during transient, e.g., in slow start. This breaks packet conservation and self-clocking, and allows a large burst 

of packets to be sent. 

5.4.1 Burstiness Reduction  

Congestion window regulate packet transmission on the RTT timescale. We may think of the ratio of window to 

RTT as the target throughput in each RTT. At large window size, e.g., a window of 14000 packets over a RTT 

of 180ms, the instantaneous transmission rate can far exceed the target throughput when acks are compressed, 

delayed, or lost. The burstiness reduction mechanism controls the transmission rate within each round trip time 

by limiting bursts, as follows.  

We define the instantaneous burstiness, B9t), at time t as the extra backlog introduced during the RTT before t: 
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Figure 4.1: Window Pacing in FAST TCP 

 

Where Ti(t)&wi(t) are the round-trip time and the window size, respectively, at time t and W(s, t) is the number 

of packets sent in a time interval [s, t]. The idea of burstiness reduction is to regulate the transmission rate to 

limit Bi(t) to be less than a threshold. When an acknowledgement arrives, Bi(t) is calculated before transmitting 

any new packets. New packets are sent only if Bi(t) is less then the threshold, and postponed otherwise [3], [4]. 

5.4.2 Window pacing 

Window pacing tries to increase the congestion window smoothly over the idle time of a connection to break up 

large bursts of packets [1], [2]. This done in the hope that self-clocking supplemented with the burstiness 

reduction mechanism would then maintain the “smoothness” of data transmission. For example, during the 

slow-start phase, packets tend to be sent out in bursts. Pacing the increase to congestion window can break up 

such bursts [1], [2]. There are two components in window pacing, one to detect idle times and the other to 

spread window increments over these idle times.  

5.5 Packet Level Implementation 

It is important to maintain an abstraction of what the code-level functions execute as the implementation evolves 

[2], [5]. This intermediate abstraction should describe the high-level operations each component performs based 

on external inputs, and can serve as a road map for future TCP implementations as well as improvements to 

existing implementations. Whenever a non-trivial change is required, one should first update this abstraction to 

ensure that the overall packet-level code would be built on a sound underlined foundation before actually 

writing code [2], [3]. 

 

Figure 5: From flow-level design to implementation. 

 

Since TCP is an event-based protocol, our control actions should be triggered by the occurrence of various 

events. Hence, we need to translate our flow-level algorithms into event-based packet-level algorithms [6]. 
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There are four types of events that FAST TCP reacts to: on the reception of an acknowledgement, after the 

transmission of packet at the end of an RTT, and for each packet loss. 

Figure 5 presents an approach to turn the high-level design of a congestion control algorithm into 

implementation. First, an algorithm is designed at the flow-level and analyzed to ensure that it meets the high-

level objectives such as fairness and stability [3], [4].  

 

VI. EQUILIBRIUM AND STABILITY OF WINDOW CONTROL ALGORITHM   

In this section we provide a partial analytical evaluation of FAST TCP. We present a model of the window 

algorithm. We show that in equilibrium, the vectors of source windows and link queueing delays are the unique 

solutions of a pair optimization problems. This completely characterizes the network equilibrium properties 

such as throughput, fairness and delay. We also analyze the stability of the control algorithm is locally stable. 

Extensive experiments in this section shows its stability in the presence of feedback delay [3], [4], [5], and [6]. 

 

VII. PERFORMANCE STUDY OF FAST TCP 

7.1 Topology and Background Traffic 

As a baseline topology, we consider many flows sharing a single congested link as shown inFig. 7.1. The 

bandwidth of this link is 1.5 Mb/s and it has propagation delay 10ms. Theaccess links have capacity 2 Mb/s and 

delay 10ms, so that the minimum round-trip timefor flows is approximately 60ms [1], [3], and [4]. The queue 

size is set to 4 times the delay-bandwidthproduct. Each simulation run lasts more than 20 s. The ns-2 

implementation of FAST TCPis derived by modifying TCP/Reno. To explore the dynamics of FAST TCP, we 

use constant rate flows with equal times. 

 

 

 

Figure 7.1: Topology 

While not representative of actual traffic patterns, thisscenario is motivated by the need to systematically 

explore FAST TCP's ability to utilize theexcess bandwidth and to study its transparency and fairness properties 

in the presenceof dynamic background traffic [3], [4]. In these experiments, the available bandwidth 

alternatesbetween the full linkscapacities of 1.5 Mb/s when the periodic source is idle. 

 

7.2 Simulation Experiments 

We now use simulation based approach to evaluate the performance of FAST TCP in a variety of scenarios, 

including FTP, 'square-wave', and other background traffic patterns,with long and short-lived TCP flows on 

bottleneck network topology [3]. Our goal is toexplore FAST TCP's behavior in both artificial and realistic 
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network environments. Weevaluate FAST TCP’s impact on the throughput, fairness, and stability and 

responsiveness characteristics of competing cross-traffic [1].  

 

7.2.1Throughput 

The average aggregate throughput for the intervalis defined [1], [2]. The system throughput or aggregate 

throughput is the sum of the data rates that are delivered to all terminals in a network [6]. Throughput is 

essentially synonymous to digital bandwidth consumption; it can be analyzed mathematically by means 

of queueing theory, where the load in packets per time unit is denoted arrival rate λ, andthe throughput in 

packets per time unit is denoted departure rate μ. 

 

Figure 7.2 Throughput 

7.2.2Responsiveness 

The responsiveness index measures thespeed of convergence when network equilibrium changes. When flows 

join or depart. The definition of responsiveness index is as the earliest period afterwhich the throughput x (k) 

(asopposed to the running average x (k) of thethroughput) stays within 10% of its equilibrium value is 

unsuitable for TCPprotocols that do not stabilize into an equilibrium value [2], [3] and [4].  

 

 

 

http://en.wikipedia.org/wiki/Digital_bandwidth_consumption
http://en.wikipedia.org/wiki/Queueing_theory
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Figure 7.3Responsiveness 

7.2.3Fairness 

In this simulation we observe FAST TCPfairness property. The whole bandwidth is madeavailable to FAST 

TCP flows. FTP trafficover FAST TCP along a) Node-0 to Node-5 and b) Node-2 to Node-7 is given with 

similarnetwork characteristics.The bandwidth utilization and congestion window size for both the flows is as 

shown infigure 7.4. [3], [4]. The shape of both the flows for bandwidth utilization as well as for 

congestionwindow adjustment states that, Competing FAST TCP flows obtain their fair share of theavailable 

bandwidth. Moreover we also observe that, as the available bandwidth changesover time, FAST TCP provides a 

mechanism to continuously adapt to changing network. Intra-protocol fairness: Jain’s fairness index for the 

interval is defined as [2]. Andis ideal (equal sharing). 

 

Figure 7.4Fairness 

7.2.4 Stability 

Specifically, as the number of competing sources in a network, stability become worse for the loss – based 

protocols, oscillation in both congestion windows and queue size are more severe all loss base protocols. 

Packets loss was more severe. The performance of the FAST TCP did not d grade in any significant way [2], 

[3]. Connection sharing the link achieved very similar rates. There was reasonably stable queue at all times, with 

little packets loss and high link utilization. Intra protocols fairness is shown in table 4, with no significant 

variations in the fairness of FAST TCP.    
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Figure 7.5Stability 

VIII. CONCLUSION  

We have described an alternative congestion control algorithm, FASTTCP, which addresses the four main 

problems of TCP Reno in networks with high capacities and large latencies. FAST TCP has a log utility 

function and achieves weighted proportional fairness [1], [3]. Its window adjustment is equation based, under 

which the network moves rapidly towards the equilibrium when the current state is far away and slows down 

when it approaches the equilibrium. FAST TCP uses queueing delay, in addition to packetloss, as a congestion 

signal. Queueing delay provides a finer measure of congestion and scales naturally with network capacity [4]. 

    We have presented experimental results of our first Linux prototype and compared its performance with TCP 

Reno, HSTCP and STCP .We have evaluated these algorithms not only in static environments , but also in 

dynamic environments where flows come and go ; and not only in terms of end to end throughput , but also 

queue behavior in network . In this experiments, HSTCP and STCP achieved better throughput and link 

utilization than Reno, but their congestion window and queue executed significant oscillations .TCP Reno 

produced less oscillations, but at the cost of lower link utilization when sources departed. FAST TCP, on the 

other hand, consistently out performs these protocols in terms of throughput fairness, stability and 

responsiveness. 
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