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ABSTRACT                                                                                                                                                                                                                      

An approach for removal of the presence of ECG in electromyographic signals by means of time-variant 

harmonic modeling of the cardiac artifact. The amplitude and frequency time variations in heart rate and QRS 

complex variability of the electrocardiograms are simultaneously captured by a set of third-order constant-

coefficient polynomials modulating a stationary harmonic basis in the analysis window. Such a characterization 

allows us to significantly suppress ECG signal component from the mixture by preserving most of the EMG 

signal content at low frequencies (less than 20 Hz). Moreover, the resulting model is linear in parameters and 

the least-squares solution to the corresponding linear system of equations efficiently provides model parameter 

estimates. The result suggests that the proposed method outperforms in terms of the EMG preservation at low 

frequencies. 
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I. INTRODUCTION 

Electromyography (EMG) is a technique used to evaluate the activity of the muscles. For extracting accurate 

information, it is required to record a clean and undistorted electromyography (EMG) signal. There are many 

artifacts that could affect EMG signals, such as crosstalk, which can be avoided or minimized by a correct 

placement of the surface electrodes on the skin. However, when the EMG signal is recorded on some specific 

muscles (e.g. the trunk’s muscles), it is often contaminated by the ECG signal and significantly increasing the 

power of the EMG signal. This artifact can hardly be avoided; therefore, to extract valid information of the 

EMG signal, it is necessary to process the EMG signal to remove the ECG signal. There are many different 

methods to remove the ECG components from the EMG signal. The simplest method consists of high-pass 

filtering EMG signal with a fourth order Butterworth filter at a cut-off frequency of 30Hz. The main problem of 

this method is that an important part of the EMG signal concerning the changes of negative afterpotentials is 

removed as well. It is known that the negative afterpotentials increase during fatigue and these changes could 

affect the amplitude of the EMG signal significantly. In addition, it is found that these changes are reflected in 

the EMG spectrum within a frequency range below 10 Hz. Therefore, by filtering the EMG signal using a high-

pass filter of 30Hz, valuable information of the EMG signal is removed when fatigue is analyzed. Other 

techniques are required the recording of additional signals. Some of those techniques were based on adaptive 
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filtering which needed an external reference ECG signal as well as the EMG signals. Another method required 

the recording of several EMG signals to remove the ECG signals using independent component analysis (ICA). 

Another form of adaptive filtering was the wavelet-based approach which performed without external reference 

signals. However, the selection of an appropriate wavelet shapes and corresponding decision thresholding are 

major drawbacks.  

In this paper, there is an approach that addresses the issue of explicit non stationary harmonic modeling of the 

ECG signal component. This approach arose from audio signal processing. Although, we model simultaneously 

both amplitude and frequency changes in the ECG signal component by means of a time-variant harmonic 

structure whose mean fundamental frequency is kept constant in the analysis window. It is shown that the time 

changes in an ECG harmonic are correctly captured by two constant-coefficients cubic polynomials each 

modulating a sine and a cosine function, respectively. Accordingly, the overall ECG model is a linear system of 

equations, which can be efficiently solved by any linear solver, e.g., least squares. Once the model parameters 

(polynomial coefficients) are estimated, the ECG signal component is generated and subtracted from the mixture 

in order to obtain the EMG signal component estimation. 

 

II. EXISTING METHODOLOGY 

2.1 EXISTING SYSTEMS 

There are different methods to remove the ECG components from the EMG signal “Elimination of 

electrocardiogram contamination from electromyogram signal: An evaluation of currently used removal 

technique’’. The simplest method consists of high-pass filtering EMG signal with a fourth order Butterworth 

filter at a cut-off frequency of 30Hz. 

 Filter Method 

 Wavelet Independent Component Analysis (WICA) Method 

The simplest method consists of high-pass filtering EMG signal with a fourth order Butterworth filter 

at a cut-off frequency of 30Hz [6]. The main problem of this method is that an important part of the EMG 

signals concerning the changes of negative after potentials is removed as well. It is known that the negative after 

potentials increase during fatigue [7], [8] and these changes could affect the amplitude of the EMG signal 

significantly. In addition, it is found that these changes are reflected in the EMG spectrum within a frequency 

range below 10 Hz [10]. Therefore, by filtering the EMG signal using a high-pass filter of 30Hz, valuable 

information of the EMG signal is removed when fatigue is analyzed. Other authors developed techniques that 

required the recording of additional signals. Some of those techniques were based on adaptive filtering [11], 

[13] which an external reference ECG needed signal as well as the EMG signals. Other methods required the 

recording of several EMG signals to remove the ECG signals using independent component analysis (ICA) [14]. 

Another form of adaptive filtering was the wavelet-based approach [15], [16] which performed without external 

reference signals. However, the selection of an appropriate wavelet shape and corresponding decision 

thresholding are major drawbacks from the user’s point of view. Let us also mention a recent approach [17] 

which uses a nonlinear scaled wavelet decomposition followed by ECG–EMG pattern separation by means of 

frequency domain ICA. 
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III. PROPOSED METHODOLOGY 

3.1 PROPOSED SYSTEM 

 

 

Fig: 3.1 Block Diagram of Proposed System 

 

3.2 MODULES 

 ECG signal generation 

 EMG-ECG mixture 

 Sine/Cosine approximation 

 Polynomial coefficients estimation 

 

3.3 ECG SIGNAL GENERATIONS 

The ECG signal can by generated by the principle of Fourier series. Any periodic functions which satisfy 

dirichlet’s condition can be expressed as a Series of scaled magnitudes of sine and cosine terms of frequencies 

which occur as multiples of fundamental frequency. 

The general Fourier series expression can be given as 

                             (1) 

 

 

 

 

 

 

Let’s take QRS waveform as the centre one and all shifting takes place with respect to this part of the signal. 

Duration of P, Q, R, S, and T waves are 

 P-R interval 0.16s 

 S-T interval 0.18s 

 P interval 0.09s 
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 QRS interval 0.11s 

 

                                    (2) 

 

             (3)    

              

 

The amplitude of the QRS wave is 1.6 mv. This QRS wave can be estimated by using this expression 

            (4) 

      

    

    

The amplitude of the T wave is 0.35 mv. This T wave can be estimated by using this expression          

 

               (5) 

3.4 ECG - EMG MIXTURE SIGNAL 

The EMG contribution to the mixture was determined by the signal-to-noise ratio (SNR), which we defined as 

the energy ratio between the EMG and ECG component in the analysis time window. In this way, we could 

simulate any segment of an EMG burst by simply adjusting the corresponding SNR. For the sake of illustration, 

we calculated the spectrum of the 20000- sample-simulated mixture signal by means of the 80000-point fast 

Fourier transform for two scenarios: SNR = 0 dB and SNR = –30 dB. 

3.5 SINE/COSINE APPROXIMATION 

  

              (6) 

 

 ;  

Where, 

 ,   

 

 

 are uniformly distributed time instants in the range [–T/2, T/2]. The error terms  and  are evaluated in 

decibels. 
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3.6 POLYNOMIAL COEFFICIENT     ESTIMATION 

 

                    (7) 

 

                     (8) 

 

The coefficients  and  are efficiently estimated by means of the linear least-squares (LS) algorithm 

applied to above equation in the matrix form, 

               (9)                                                             

 Where  is the coefficient Vector. 

 

3.7 DATA FLOW DIAGRAM 

 

 

Fig: 3.2 Data Flow Diagram 

 

IV. SIMULATION RESULTS 

It is shown that the time changes in an ECG harmonic are correctly captured by two constant-coefficients cubic 

polynomials each modulating a sine and a cosine function, respectively.  
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Fig: 4.1 Estimated EMG Signal 

Accordingly, the overall ECG model is conceived as a linear system of equations, which can be efficiently 

solved by any linear solver, e.g., least squares. Once the model parameters (polynomial coefficients) are 

estimated, the ECG signal component is generated and subtracted from the mixture in order to obtain the EMG 

signal component estimation. The MATLAB simulation results are shown here. 

 

 

Fig: 4.2 Quality of the small-argument approximation 

In Fig: 4.2, both curves follow a descending trend because the longer the window the larger the sine/cosine 

argument. Very short windows (T < 0.4 s) provide extremely high-approximation quality of more than 100 dB. 

Such high quality, however, is not really necessary in clinical applications. In fact, for T = 2 s, the 

approximation quality is settled around 40 dB, which is still very good for the present application. 
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Fig: 4.3 EMGRR in the frequency band 0–20 Hz. [1] 

We observe very different EMGRR trends for the proposed and WICA methods on one hand, and the filter 

method on the other [1]. In particular, the filter method seems to be almost insensitive to SNR variations. This 

phenomenon is easy to explain if we recall that the filter method suppresses almost completely the frequency 

content up to 30 Hz. Therefore, the estimation error in the analysis bandwidth 0–20 Hz will be practically 

independent of the SNR. The other two methods, however, provide a more sophisticated performance, which 

gives rise to the EMGRR dependent on the SNR. The descending EMGRR trend is due to the fact that for 

increasing SNR the estimation error becomes more significant, as the EMG energy vanishes. 

 

Fig: 4.4 EMGRR in the frequency Band 0–20 Hz (Proposed Method). 

Here in this proposed method the EMGRR in fig 4.4 is significantly improved as compared with EMGRR in fig 

4.3. 

 

V. CONCLUSION 
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This paper has shown that explicit modeling of ECG as a time variant harmonic signal component is an 

adequate tool for removing cardiac artifacts in surface EMG signals. The strength of the proposed approach is 

founded in a correct characterization of instantaneous amplitude and frequency changes in the ECG, typically 

due to HRV and QRS complex time modulation. It was shown that in a short analysis window, the ECG can be 

described by a simple analytical formulation containing low-order polynomials and harmonically related 

stationary Sine and cosines. The ECG model parameters are efficiently estimated from a linear system of 

equations by means of QR factorization. 

The proposed method has been compared to two reference methods based on high-pass filtering and combined 

independent component analysis and wavelet transform, respectively. The Experimental comparison results, 

regarding both artificial and real-world signals, show that in the analysis bandwidth 0–20 Hz, the proposed 

method outperforms the reference methods, as it introduces the smallest distortion in the EMG signal 

component.  
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