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ABSTRACT 

A wireless sensor network is one of the most attractive research fields in the communication networks. This will 

creates a great popularity regarding their potential use in a wide variety of applications like monitoring 

environmental attributes, intrusion detection, and various military and civilian applications. The main 

performance of these sensor networks is maintaining network life time while satisfying coverage and 

connectivity in the deployment region. In this paper, we look at the problem of maintaining energy level of the 

sensor node , reliable routing and multi-hop in WSN within a finite two-person zero-sum game theoretic 

approach. The game theoretic scheme is based on models that express the interaction among players, in this 

case, nodes, by modeling them as elements of a social networks in such a way that they act as to maintaining the 

maximum utility.  Simulation results are shows the effectiveness of the proposed game with various path loss 

exponents and also the proposed games is able to maintain the energy level of the network life time. 

Keywords: Wireless Sensor Networks, Two-person zero-sum Game Theory, Routing, Life time. 

 

I. INTRODUCTION  

 

Wireless Sensor networks is one of the most promising and interesting areas in the past years. This network 

consists of a large number of sense nodes. These nodes are able to gather the information and process it and 

send it to the relevant destinations. Also, these nodes form a network by communicating with each other either 

directly or through other nodes. One or more nodes among them will serve as sink(s) that are capable of 

communicating with the user either directly or through the existing wired networks. The primary component of 

the network is the sensor, essential for monitoring real world physical conditions such as sound, temperature, 

humidity, intensity, vibration, pressure, motion, pollutants etc. at different locations. The nodes are deployed in 

hostile environment it is not feasible to replace the batteries. Therefore energy conservation is very crucial for 

WSN’s both for each sensor node and the entire network level operations to prolong the network lifetime.  

Energy –constrained networks, such as Wireless sensor networks are composed of nodes typically powered by 

batteries, for which replacement or recharging is very difficult, if not impossible. With finite energy, we can 

only transmit a finite amount of information. Therefore, minimizing the energy consumption for data 

transmission becomes one of the most important design considerations for such networks [1]. One of the desired 

features of wireless sensors networks is their capability to function unattended in unkind environments and 
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inaccessible terrains in which up to data monitoring schemes are unsafe, heavy-handed, and sometimes 

infeasible. 

Now days, some research efforts have focused on establishing efficient routing paths for transmitting packets 

from a sensor node to a sink in WSN’s. Routing means finding the best possible way for data transmission from 

source node to the destination node in the network by considering networks parameters. The other important 

factor that must be considered in the network is Load Traffic Distribution. Usually the traffic load in wireless 

sensor networks is unbalance. For example, sensors which are nearer to the source have more data load. 

Therefore, optimization of load distribution, called Load Balancing, is one of the important factors for 

improving the efficiency of the networks. Optimization of load traffic distribution in WSN could increase the 

lifetime of the network. Since, there is more power consumption in nodes with more traffic load then the data 

transaction in the network could be optimized. 

Game Theory is based on models that express the interaction among players, in this case nodes, by modeling 

them as an element of a social networks in such a way that they act to maximize their own utility. This allows 

the analysis of existing algorithms and protocols for WSN’s as well as the design of equilibrium-inducing 

mechanisms that provide incentives for individual nodes to behave in socially constructive ways. In this paper, 

by using Zero-Sum Game Theory approach for WSN, optimal route in WSN is found. In this approach, routing 

and sensor nodes are assumed to be the game and players respectively. All players want to increase their benefit. 

So we use a mixed strategy model as well as profit and loss calculation for each player.  

 

II. RELATED WORKS  

The main goal of routing in WSNs is to guarantee successful packet delivery from source to sink node under 

constraint requirements like energy consumption, end to end delay, packet delivery ratio and QoS etc. In 

addition to energy consumption, more challenges and design issues are pointed out [1].   

 

Lifetime is the one of main design issue in WSN and the lifetime of the sensor node is mainly depends on the 

battery energy level. Since WSN is composed of very small nodes, their energy resources are very limited this 

imposes tight constraints on the operation of sensor nodes. The transceiver is the element which drains most 

power from the node (Fedora and Collier 2007), thus the routing protocols will significantly influence the 

lifetime of the overall network. 

Energy-aware Routing protocol (Shah and Rabaey 2002) is similar to directed diffusion with the difference is, 

it maintains a set of paths instead of or enforcing one optimal path.  These paths are maintained and chosen by 

means of a certain probability, which will depend the energy consumption of each path. By selecting different 

routes at different times, the energy of any single route will not deplete so quickly, the network lifetime 

increases.   

Data centric, hierarchical and location based routing protocols gives the importance on energy efficiency and 

increased network lifetime, with little concern on quality measures. This group of routing protocols in addition 

to the energy efficiency focuses on QoS metrics such as latency, bandwidth and efficiency. QoS based protocols 

emphasize on acknowledging the data at the right time, differentiating data based on priorities and propose 
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reliable routing algorithms. These protocols are concerned on the network fault tolerance and resilience of the 

network on node failures or node malfunctioning.  

 

III. MATHEMATICAL MODEL 

Game Theory is a theory of decision making under conditions of uncertainly and interdependence. In the 

distributed sensor network the game equation has to be found, with application of a game strategy. It is assumed 

that all the nodes in the sensor networks are the same and that all nodes are in the interference range. The 

activity of all the nodes is at the same level and it increases with the increase of power level transmission.  

A game has three components: 

(i) a set of players (ii) a set of possible of actions for each player and (iii)  a set of strategies. 

 A player’s strategy is a complete plan of actions to be taken when the game is actually played. Players can act 

selfishly to maximize their gains and hence a distributed strategy for players can provide an optimized solution 

to the game. In any game, utility represents the motivation of players. A utility function, describing player’s 

preferences for a given player assigns a number for every possible outcome of the game with the property that a 

higher number implies that the outcome is more preferred. 

A Zero-sum game is a mathematical representation of situation in which a participant’s gain or loss of utility is 

exactly balanced by the losses or gain of the utility of the other participants. The present survey covers research 

on infinite zero-sum two-person games in normal form [3] .( i.e., zero-sum two-person games with infinite sets 

of player strategies in which the player strategies are elements of certain abstract sets. In this article we do not 

consider dynamic and differential games. 

 

 

Definition:  3.1. The zero-sum two-person game in normal form is formally defined as a triple PYX ,,  

in which X  and  Y   are arbitrary infinite sets representing the sets of strategies of Players I and II 

respectively and  P  is a real function defined on the set YX  of all situations and is called the payoff 

function or kernel of the game. (If RYXP :  is the payoff function of Player I. Player II’s payoff in the 

situation  yx ,  is   yxP , ,  where Xx  , Yy  the game being zero-sum) 

Definition:  3.2    The existence of optimal (  optimal) strategies for the opponents in a zero-sum two-person 

game is equivalent to satisfaction of the following equations: 

     
Xx

max
Yy

inf  yxP ,   =  
Yy

min
Xx

sup   yxP ,  = υ     ------------    (3.1) 

     
Xx

sup  
Yy

inf  yxP ,    =  
Yy

inf
Xx

sup   yxP ,  = υ      ------------     (3.2) 

The quantity υ is called the value of the game. Even in the simplest cases, however, equations (1) and (2) fall 

short of being satisfied. Their proof requires the imposition of rather stringent algebraic constraints on the 

strategy sets X , Y and the function P (such as concavity in x and convexity in y ) as well as topological 

constraints  ( the sets X  and Y are topological spaces, and the function P  has properties of the continuity 

type). 
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     It is reasonable, therefore, to extend the strategy sets of the players in such a way that the payoff function, 

now defined on a new extended set of situations, will satisfy the required constraints .The extended strategy sets 

must be convex and include the usual strategies. 

     Let  algebra of subsets of X  containing all one-element subsets, let   be a 

algebra of subsets of Y , and let the function P  be bounded and measurable under the algebra  x 

 . A probabilistic measure defined on      is called a mixed strategy of Player I (II). If   is a mixed 

strategy of Player I and   is a mixed strategy of Player II, then the payoff function   ,P  under the 

conditions of the mixed situation   ,  is defined by the integral  

  ,P =      ydxdyxP

X Y

  , . 

     If the set of pure strategies of a player is infinite (and especially if it is denumerable ), then in the choice of 

his set of mixed strategies there is a certain arbitrariness, which rests on the particular choice of algebra of 

subsets of the pure strategy set on which the probabilistic measure is defined[2] .Various randomizations of pure 

strategy sets have been investigated by Wald and  Bieriein .Clearly, the sets of mixed strategies are convex and, 

if the ordinary, or so-called pure, strategies are regarded as corresponding degenerate measures, include all the 

pure strategies of the players. Under the conditions of mixed strategies the payoff function turns out be linear in 

each of the variables. 

     Theorems establishing the validity of equations (1) and (2) for an infinite game or its mixed extension are 

called existence theorems (or minimax theorems). The proof of existence theorem, (i.e.) the identification of 

classes of games for which a value of the game exists (or does not exist), is one the fundamental problems of the 

theory of infinite zero-sum two-person games [4]. 

      A pair of optimal strategies of each player in a zero-sum two-person game ( or the set of  optimal 

strategies for each player) in conjunction with the process of finding those strategies is known as a solution of 

the game. 

    In the infinite game, as in any zero-sum two-person game PYX ,,  the principle of player’s optimal 

behavior is the saddle point (equilibrium) principle. 

Definition:  3.3. Saddle point 

 The point   yx ,  for which the inequality  

     yxPyxPyxP ,,,


  ----------- (3.3)  

holds for all Xx  , Yy   is called saddle point. 

This principle may be realized in the game  if and only if   =


  = 


  =   
yxP ,   where 



  = 
Xx

max
Yy

inf  yxP ,
        ------------------------ (3.4) 



  = 
Yy

min
Xx

sup   yxP ,
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 (i.e) the external extreme of  maximin and minimax are achieved and the lower value of the game 

  is equal to 

upper value of the game 


 . The game   for which the (4) holds is called strictly determined and the number 

  is the value of the game. 

 

Definition: 3.4.  Saddle points,  optimal strategies 

The point  


yx ,  in the zero-sum two-person game PYX ,,  is called the  equilibrium point if the 

following inequality holds for any strategies  Xx    and Yy   of the Players I and II, respectively:    

        


yxPyxPyxP ,,,       ------------ (3.5). 

The point  


yx ,  for which equation (5) holds, is called the  Saddle point and the strategies 


yx &  

are called  optimal strategies for the players I and II, respectively. 

NOTE:  

Compare the definitions of the saddle point equation (3) and the  Saddle point equation (5), A deviation 

from the optimal strategy reduce the player’s payoff where as a deviation from the  optimal strategies may 

increase the payoff by no more than . 

In conclusion we will point out a special class of zero-sum two-person game in which  

X  = Y = [0, 1]. In these games, situations are the pairs of numbers  yx , , where  1,0, yx  such games are 

called the games on the unit square. The class of the games on the unit square is basic in examination of 

infinite games. 

Example 1:  

Suppose each of the players I and II chooses a number from the open interval (0,1). Then Player I receives a  

payoff equal to the sum of the chosen numbers. In the manner we obtain the game on the open unit square with 

the payoff function   yxP ,
 for Player I.  

 yxP ,
 =

yx 
, 

 1,0x
 , 

 1,0y
  --------(3.6). 

 Here the situation (1,0) would be equilibrium if 1 and 0 were among the players’ strategies, with the game 

value 


 being 
1 Actually the external extreme in (4) are not achieved but in the same time the upper value 

is equal to the lower value of the game. Therefore  =1 and Player I can always receive the payoff sufficiently 

close to the game value by choosing a number 1- ,  

 >0 as a sufficiently small number (close to 0), Player II can guarantee that his loss will be arbitrarily close to 

the value of the game. 

The following theorem yields the main property of   optimal strategies. 

Theorem1: For the finite value   of the zero-sum two-person game PYX ,,  to exist, it is necessary 

and sufficient that, for any  >0, there be  optimal strategies 


yx , for the players I and II, respectively, 

in which case 

  




yxP ,lim
0

=     ---------------  (3.7). 
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Proof  

Case (i) first to prove the Necessary condition: 

Suppose the game 


has the finite value
 . For any  >0 we choose strategy 

x from the condition  

  





 2
, yxPSup

Xx

   ----------- (3.8) 

And strategy 
x  from the condition  

  





 2
, yxPInf

Yy
   -------------------- (3.9) 

We know that    

  = 
Xx

max
Yy

inf  yxP ,
  ,  



  = 
Yy

min
Xx

sup   yxP ,
 

    From equation (8) & (9) we obtain the inequality 

   
2

,
2

,








yxPyxP 
    ---------------- (3.10)   for all strategies

yx ,
. 

Consequently, 
 

2
,





yxP

  ----------------- (3.11) 

The relations 
      


yxPyxPyxP ,,,

, 
 




yxP ,lim
0

=     follows from  

  





 2
, yxPSup

Xx

 and   





 2
, yxPInf

Yy
  . 

  





 2
, yxPSup

Xx

  
2

,







yxPInf
Yy

 

Case (ii) Next to prove the sufficient condition: 

 If the inequalities 
      


yxPyxPyxP ,,,

 hold for any number 
0

, then  

          






22,2,,,,
_

_

 yxPInfSupyxPInfyxPyxPSupyxPSupInf
yyXxYyXxXxYy

                                                                                 ----------- 

(3.12) 

Hence it follows that _

_

 
, the inverse inequality holds true. Thus, it remains to prove that the value of the 

game 
  is finite. 

 Let us take such sequence  
n

 that 0lim 
n

n . 

Let k


   
 

n
  

nmk


 , where 
m

any fixed natural number is. We have  

     
mkkmk

mkmkmkkmk

yxPyxPyxP





,,,
, 

     
kk

kmkkkmkk

yxPyxPyxP 




,,,
  . 

Thus
   

kmmkk
mkmkkk

yxPyxP 




,,
. 
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Since 
0lim 


km

k


 for any fixed value of  

m
, then there exists a finite limit 

 




yxP ,lim
0 . From the 

relationship equation (10) we obtain the inequality  

  


yxP ,
; Hence 

 =  




yxP ,lim
0 . 

This completes the proof of the theorem. 

 

 

IV. LIFETIME EXTENSION ALGORITHM 

In this section, we propose a infinite zero-sum game theory life time extension algorithm. In order to implement 

the algorithm, the node i receives the sum of interference power from sink node to the destination node [6].  The 

lifetime sensor node maintained according to the equation  Xx

max
Yy

inf  yxP ,   =  
Yy

min
Xx

sup   yxP ,  = υ   

and    




yxP ,lim
0

=   

The latency at the source node 
S

L  is given by, 

 
data

sleep

S
TTT

T
L 

21

2
               -------------------- (4.1)                         

The latency at the intermediate node is same as that of source node, which is given in equation (13). 

The end-to-end latency for multi-hop 
m

L  transmission is given by, 




N

i

im
LL

1

   -------------------- (4.2).                                                

 

V. SIMULATION RESULTS AND DISCUSSION 

The proposed algorithm has been simulated and validated through simulation. The sensor nodes are deployed 

randomly in a 100x100 meters square and sink node deploy at the point of (50, 50), the maximum transmitting 

radius of each node is 80 m; other simulation parameters are displayed in Table1. In this section, we first discuss 

utility factor and pricing factor’s influences on transmitting power, and then evaluate the algorithm with other 

existing algorithm. Figure1. Shows that the average delivery delay with increasing transmission rate. 

                                                                            Table 1.  Simulation Parameters 

Parameters Value 

Number of Nodes 50-100 

Network Area 100 X 100 

Sensing Range 16m 

Initial Energy of sensor 

node 

2KJ 
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Sending and Receiving 

Slot 

50msec 

Transmission Range 250meter 

Packet Size  64 Bytes 

Energy threshold 
th

E  0.001mjoules 

Channel Frequency 2.4GHz 

Receiving power 36mW 

Power consumption in 

sleep mode 

0.36J 

Type of mode Mica 2 

Radio Bandwidth 76kbps 
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L
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k
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e
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a
b
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y
 

 

 
DD

Flooding

Energy Aware Routing

LRR

 

Figure 1: Average Delivery Rate with various Transmission Rate 

The average delay means the average delay between the instant the source sends a packet and moment the 

destination receives this packet. When the transmission rate is 1 packet per second, we can see that the average 

delivery delay of DD, Flooding, and Energy Aware is lower than the proposed LRR protocol. 
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In the proposed protocol, when the packets reach at destination, the relay or intermediate nodes have a lower 

multiple strategies. In the forwarding node selection game, the probability that a great amount of packets are 

forwarded by the same node is relatively low. Thus, the average delivery delay of our protocol does not 

significantly increase with an increase in transmission rate. The following table 2 shows the network life time of 

nodes in the respective routing protocols. 

Routing  

Protocols 

Nodes Alive Number of Nodes 

100 

Rounds 

700 

Rounds 
20 Nodes 100 Nodes 

LRR 

(Proposed) 

100 45 0.15 0.4 

Flooding 59 18 0.05 0.07 

DD 42 5 0.035 0.15 

Energy 

Aware 

68 20 0.1 0.34 

 

VI. CONCLUSION 

In this paper, we introduce a zero-sum game theory for maintaining a sensor network lifetime. In this network 

connectivity of nodes forward to any packets to its neighbor nodes. Zero-sum game theory improves the 

network lifetime. Direct diffusion (DD) protocol, after 400 rounds, about 25% of nodes alive. In proposed link 

reliability routing (LRR) protocol, after 550 rounds Network lifetime is increasing about 70%. Path reliability 

for direct diffusion (DD) protocol is random. Path reliability for proposed link reliability routing (LRR) 

protocol, increases Number of nodes increases to above 70 nodes, the path reliability is more than 0.3. This 

shows that our proposed model and algorithm increases the network lifetime. Also, we will be optimizing the 

algorithm to find the maximum usefulness function of all nodes that cooperate in path. 
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