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ABSTRACT  
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I. INTRODUCTION 

 

Information theory is a relatively new branch of Mathematics that was made mathematically     rigorous only in 

the 1940s. Information theory deals with the study of problems concerning any system. This includes 

information processing, information storage, information retrieval and decision making. , information theory 

studies all theoretical problems connected with the transmission of information over communication channels. 

This includes the study of uncertainty (information) measures and various practical and economical methods of 

coding information for transmission. The first studies in this direction were undertaken by Nyquist [9] in 1924 

and 1928 [10] and by Hartley in 1928 [27], who recognized the logarithmic nature of the measure of 

information. In 1948, Shannon [5] published a remarkable paper on the properties of information sources and of 

the communication channels used to transmit the outputs of these sources. Around the same time Wiener [22] 

also considered the communication situation and came up, independently, with results similar to those of 

Shannon. In the past fifty years the literature on information theory has grown quite voluminous and apart from 

communication theory it has found deep applications in many social, physical and biological sciences, for 

example, economics, statistics, accounting, language, psychology, ecology, pattern recognition, computer 

sciences, fuzzy sets, etc. A key feature of Shannon information theory is the term "information" that can often 

be given a mathematical meaning as a numerically measurable quantity, on the basis of a probabilistic model, in 

such a way that the solutions of many important problems of information storage and the transmission can be 

formulated in terms of this measure of the amount of information. As pointed out by Renyi [3] in his 

fundamental paper on generalized information measures, in other sort of problems other quantities may serve 

just as well, or even better, as measures of information. This should be supported either by their operational 

significance or by a set of natural postulates characterizing them, or, preferably, by both. Thus the idea of 
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generalized entropies arises in the literature. It started with Renyi [3] who characterized scalar parametric 

entropy as entropy of order r, which includes Shannon entropy as a limiting case.  Fuzzy set theory has been 

studied extensively over the past 30 years. Most of the early interest in fuzzy set theory pertained to representing 

uncertainty in human cognitive processes. Fuzzy set theory is now applied to problems in engineering, business, 

medical and related health sciences, and the natural sciences. In 1978, Zadeh [16] first created the theory of 

fuzzy, which is related to fuzzy set theory. His study showed that the importance of the theory of fuzzy is based 

on the fact that much of the information on which human decisions is possibilistic rather than probabilistic in 

nature. Fuzzy set theory is being recognized as an important problem modeling and solution technique. The use 

of fuzzy set theory as a methodology for modeling and analyzing decision systems is of particular interest to 

researchers. In 1976, Zimmermann [11] first introduced fuzzy set theory into an ordinary linear programming 

problem with fuzzy objective and constraints. Zadeh [16] introduced the concept of fuzzy sets in which 

imprecise knowledge can be used to define an event.To explain the concept of fuzzy entropy in general, Kapur 

[12] considered the following vector: 
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x  = 1, it definitely belongs to set A. If 
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x =0.5, there is maximum certainty whether xi belongs to set A or not. The above vector in which every 

element lies between 0 and 1 and has the interpretation given above, is called fuzzy vector and the set A is 

called a fuzzy set. If every element of the set is 0 or 1, there is no uncertainty about it and the set is said to be a 

crisp set.Thus there are 2 
n 

crisp sets with n elements and infinity many sets with n elements.If Some elements 

are 0 or 1 and the others lie between 0 or 1 the set will still said to be a fuzzy set. With the i
th

   element, we 

associate a fuzzy uncertainty f ( )(
iA

x ),   where f(x) has following properties: 

I. f(x) = 0 when x = 0 or 1 

II. f(x) increases as x goes from 0 to 0.5 

III. f(x) decreases as x goes from 0.5 to1.0 

IV. f(x)=f(1-x) 

If the n elements are independent, the total fuzzy uncertainty is given by,  
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The fuzzy uncertainty is called fuzzy entropy. 

 

Klir and Folger [8] stated that the term fuzzy entropy was apparently due to clarity of product terms in the 

following two expressions: 
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After this development, a large number of measures of fuzzy entropy were discussed, characterized and 

generalized by various authors. 

In coding theory, Error-correcting codes play an important role in many areas of science and engineering. Error-

correcting codes constitute one of the key ingredients in achieving the high degree of reliability required in 
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modern data transmission and storage systems. We come across the problem of efficient coding of messages to 

be sent over a noiseless channel and attempt to maximize the number of messages that can be sent through a 

channel in a given time. Therefore, we find the minimum value of a mean codeword length subject to a given 

constraint on code- word lengths. Let us assume that the messages to be transmitted are generated by a random 

variable X and each value xi, i  = 1, 2, ...., n of X must be represented by a finite sequence of symbols chosen 

from the set { a1, a2, ....., aD }. This set is called code alphabet or set of code characters and sequence assigned to 

each i x , i = 1, 2,....., n is called code word. Let ni  be the length of code word associated with xi satisfying 

Kraft‟s [13] inequality given by the following mathematical expression: 

 

Where, D is the size of alphabet. In calculating the long run efficiency of communications, we choose codes to 

minimize average code word length, given by  

 

Where is the probability of occurrence of xi .For uniquely decipherable codes, Shannon‟s[4] noiseless coding 

theorem states that 

 

 

 

Determines the lower bounds on L in terms of Shannon‟s entropy H(P). 

 

Campbell [17] for the first time introduced the idea of exponentiated mean codeword length for uniquely 

decipherable codes and proved a noiseless coding theorem.  

He considered a special exponentiated mean of order  given by  

 

 

And showed that its lower bound lies between  and  + 1 

Where  

 The above is Renyi‟s [3]  measure of entropy of order .As , it is easily shown that and  

approaches H(P). 

It may be seen that the mean codeword length had been generalized parametrically and their bounds had been 

studied in terms of generalized measures of entropies. Here we give another generalization and study its bounds 

in terms of generalized fuzzy information measures of order and type . 

Generalized coding theorems by considering different information measure under the condition of unique 

decipherability were investigated by several authors. 

Arun Choudhary and Satish Kumar[1] proved some  noiseless coding theorem on generalized R- Norm entropy. 

Also , Arun Choudhary and Satish Kumar [2] proposed some coding theorems on generalized havrda-charvat 

and tsalli‟s entropy. 
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M.A.K. Baig and Mohd Javid Dar [19] & [20] introduced some Coding theorems on Fuzzy entropy Function 

Depending Upon Parameter R and V . Further, Fuzzy coding theorem on generalized fuzzy cost measure. 

Parkash and P. K. Sharma [23] & [24] proved some noiseless coding theorems corresponding to fuzzy entropies 

and introduced a new class of fuzzy coding theorems. 

Guiasu and Picard [6] defined the weighted average length for a uniquely decipherable code as: 

 

 

Longo [18] interpreted this as the average cost of transmitting letters  with probability  and utility  and 

gave some practical interpretation of this length. Lower and upper bounds for the cost function  in terms of 

weighted entropy have also been derived.  

 Longo [18] gave lower bound for useful mean codeword length in terms of quantitative-qualitative measure of 

entropy introduced by Belis and Guiasu [4]. Guiasu and Picard [6] proved a noiseless coding theorem by 

obtaining  lower bounds for similar useful mean codeword length. Gurdial and Pessoa [7] tried to extend the 

theorem by finding lower bounds for useful mean codeword lengths of order  in terms of useful measures of 

information of order  .  

Some other pioneer who extended their results towards the development of coding theory are Korada and 

Urbanke [15], Szpankowski [28], Merhav [21] etc. Recently, Kapur [14] has established relationships between 

probabilistic entropy and coding. But there are many situations where probabilistic measures of entropy do not 

work and to tackle such situations, instead of taking the idea of probability, the idea of fuzziness can be 

explored.  

 In the next section, we have considered the fuzzy distributions and developed a new mean codeword lengths by 

proving noiseless coding theorems. 

In this paper we study noiseless coding theorem by considering a fuzzy information measure  depending on two 

parameters.  

 

II. FUZZY NOISELESS CODING THEOREM  

 

In this section, we consider the following generalized parametric measure of fuzzy entropy: 

 

           ,where       (2.1) 

Under the assumption, we study the following properties: 

1.  

2. When  ,  

3. When  , 
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Hence, is an increasing function of  for  

4. When  ,  Hence is an decreasing function of  for 

 

5.  does not change when  is changed to ( 1 -  ) 

Under the above conditions, the generalized measure proposed in (2.1) is a valid measure of fuzzy entropy. 

 

For this fuzzy measure of information of order    and type  we obtained the following mean codeword length 

 : 

                                                                                                                  

,                                                                                                                    

where .             

Now, corresponding to the proposed fuzzy information measure a noiseless coding theorem has been proved. 

         

Theorem 2.1 : For all uniquely decipherable codes , 

                                               (2.2) 

Where, 

                                                                                                                  

,                                                                                                                    

where .                    (2.3) 

Proof : By Holder „s inequality, we have 

                                                       (2.4) 

Set  

    , . 

Take     . 

 Then equation (2.4) becomes 

   

 

Or 
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By Kraft‟s inequality, 

 

Or 

 

Take    ,we have 

 

Or 

 

 

Subtracting from both sides, we get 

 

 

 

Taking summation on both sides, 

 

 

Let  =   and multiplying both  

 sides by  , we get, 

 

That is, 

  which proves the result. 

 

Theorem 2.2: For all uniquely decipherable codes, we have the following inequality: 
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                                          (2.5) 

where 

                                                                                                                  

, is a new mean codeword length                                                                                                                    

where .                      (2.6) 

Proof:  Consider a quantitative –qualitative measure of information of order and type: 

 

For this quantitative–qualitative measure of information of order and type  we obtain the following new 

mean codeword length of order and type  :  

 

 

Now, By Holder„s inequality, we have 

                                                        (2.7) 

Set  

    , . 

Take     . 

 Then equation (2.6) becomes 

   

 

Or 

  

By Kraft‟s inequality, 

 

Or 

 

Take    ,we have 
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Or 

 

 

Subtracting from both sides, we get 

 

Taking summation on both sides, 

 

 

Let  = }  and multiplying both  

 Sides by  , we get, 

 

 

 

That is, 

  which proves the result. 

 

III.MONOTONICITY OF THE MEAN CODEWORD LENGTH 
 

Next, with the help of the data, we have presented the mean codeword length  graphically. For this purpose, 

we have computed different values of  for different values of the parameter α and β, corresponding to 

different fuzzy values . Next, we have presented  graphically and obtained the fig-3.1 which clearly 

shows that the codeword length  is monotonically decreasing function. 
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Fig-3.1 
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