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ABSTRACT-This brief presents a method to commence a reduced order system for a given SISO (stable) linear 

continuous time system. This approach is about to retain the stability while converting the higher order system into 

its lower order approximant using Padé approximant  and then a controller is put together in the reduced order 

system attaining stability and necessary parameters of the system. A numerical example is also presented to 

illustrate the behavior of the original system with its reduced order approximation and then attaching a controller 

and check the stability of the reduced order system with controller.  

Keywords: Controller Designing, Model Truncation, Padé Approximation Technique, SISO Linear 

Continuous Time System. 

I INTRODUCTION 

In many cases, it is quite essential to illustrate a high order system by a lower order system. System reductions of 

continuous and discrete systems have been broadly examined. There are several techniques which are Aggregation 

method [14], Moment matching technique [15], Padé approximation [16], Routh approximation [17], L
∞ 

optimization technique [18]. Padé approximation provides computational modesty and fitting of time moments. 

But in many cases it provides instability in the reduced order model while the early system is stable.  To get a 

truncated order system; Shamash [19] has already provided a technique of merging the Routh approximation and 

time moment matching. Just have a glimpse [20] of the technique in which denominator of the system is taken by 

keeping the dominant poles of the system and the numerator is achieved by comparing the time moments. These 

techniques provide certainty in obtaining a truncated order system and these are often called Partial Padé 

approximation in the frequency domain. A time domain version of these Padé approximation techniques have been 

described by Bandyopadhyay and Lamba [21].A consolidation of frequency and time domain Padé approximation is 

also illustrated in [22]. 

Reduced order control modeling techniques, Anderson and Liu [23] are characterized in two types, direct and 

indirect techniques. In Direct techniques controller order is confined firstly and then find gain by extension, while 

indirect technique truncate the size of high order    controller. Optimal projection theory, Gangsaas et al.[24]and 

Bernstein and Hyland  are the direct techniques and the parameter  optimization approach. 
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II. PADÉ APPROXIMATION TECHNIQUE 

Let us assume the transfer function illustrate a stable single input single output (SISO) system which is given below: 
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To drive its poise compressed order (rth. order) approximant, the transfer function will be: 
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To acquire the Pade approximant, comparing the first 2r items of equation (2) to the 2r items of equation (5) 

respectively. Sometimes Padé approximant gives ambiguity in the response of the system. By introducing many 

stable reduction methods planted on the retention of r items this issue can be overthrown; have a look, for 

illustration [1]-[12].Many a times, it is not plenty enough to compare r items for a satisfactory total time response 

approximation[5];both time moments and Markov parameters must be taken. To maintain stability, a number of 

methods are in existence that helps in fully retaining r-items. Here according to the previous results Vimal Singh[13 

] by using Routh-Padé approximants it is viewed that, the denominator of the system must be taken, So as to reduce 

error between the (r+1)th and the consecutive time period. To retain stabilized system; Markov parameters are 

introduced where the numerator can be obtained in such a way, by fully restraining the first r-time moments /markov 

parameters of the system 

 

III. PRIMARY RESULTS 

Considering the outcomes [13], we can have an idea that with the help of Padé approximation technique a higher 

order system can be reformed into lower order system retaining its stability. Here the closed loop transfer function of 

a system is given below: 
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Equation (8) is attained by Routh-Padé approximation techniques; planted on the contemplation of time moments 

and it nearly preserves r+2 time moments. So equation (8) is the reduced order approximant which is given in 

equation (7). 
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IV. CONTROLLER ARCHITECTURE 

 

For a given control system; fig (1) Gpri(s) and H(s) are already provided. Our main goal is to acquire the transfer 

function of the controller Cp(s) and with the help of Cp(s) desired response of the closed loop system is obtained. 

For modeling of controller Cp(s) an indirect technique is used here. To model and acquire the closed loop transfer 

function of the controller; assumptions for model specification of the compressed order model has been taken. 

 

 

 

Fig. (1) Control Structure 
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After modification for controller, the transfer function will be: 
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With the help of Padé approximation technique Gpri(s) can be easily estimated by a reduced order transfer function 

Gcomp(s) shown in fig. (2) 
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To get a reduced order controller, Cpcomp(s); the method has been explained. 

 

 

 

Fig.(2) Closed Loop control with Cpcomp(s) and Gcomp(s) 

 

V. NUMERICAL EXAMPLE 

 

The transfer function of the primary system is [13] 
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Let us consider a reference model. In this example, a standard second-order transfer function is taken with damping 

ratio є =0.7 and natural frequency wn=1.5 rad/sec. Therefore 
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A second order model given in the equation (17) is obtained by Padé approximation technique.         
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Now let us calculate the transfer function of the controller with the primary system which is given in equation (19) 
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Now let us calculate the transfer function of the controller with the reduced order system which is given in equation 

(21) 
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The closed loop transfer function when the controller is attached to the primary system; is given below: 
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The closed loop transfer function when the reduced order controller is attached to the primary system; is given 

below: 
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Fig.(3)-1.Step responses of Gpri(s) and Gcomp(s), 2. Step responses of P(s) and Q(s) 

 

VI. CONCLUSION 

In the present work a controller is designed using the classical approach. The system is first approximated by a low 

order model using Pade approximation technique and a controller is designed for this low order model. For the 

design of the controller, a reference model Gref(s) with has been chosen. Then this reduced order controller is 

attached to the original higher order system and it was found that the step response of the primary system with 

reduced order controller is a good approximant to the step response of primary system with higher order controller. 

The present technique has been applied to the continuous systems further it would be interesting to implement the 

same idea to the discrete systems as well. 
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