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ABSTRACT 

Frequent item set mining is one of the popular data mining technique and it can be used in many data mining 

fields for finding highly correlated itemsets. Infrequent itemset mining finds rarely occurring itemsets in the 

database. Most of the Existing Infrequent itemset mining techniques finds infrequent weighted itemsets with 

high computing time and are less scalable when the database size increases. The proposed system uses 

clustering or logical grouping concepts for finding infrequent weighted itemsets. The proposed algorithm works 

well with real-time databases and is highly scalable which suits for real-time applications. 
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I. INTRODUCTION 
 

In Data Mining, Association Rule mining(ARM)[1] is one of the popular technique used to find the correlation 

between the data items in the database based on some statistical measures but not considering the interesting of 

the business users. ARM is one of the oldest technique in data mining. The goal of ARM is to find the 

relationship, correlation among different data sets in the database. Frequent itemset mining is an exploratory 

data mining technique widely used for discovering valuable correlations among data. Frequent itemsets mining 

is a core component of data mining and variations of association analysis, like association rule mining. 

Infrequent itemsets are produced from very big or huge data sets by applying some rules or association rule 

mining algorithms like Apriori technique, that take larger computing time to compute all the frequent itemsets. 

Extraction of frequent itemsets is a core step in many association analysis techniques. The frequent occurrence 

of item is expressed in terms of the support count. However, significantly less attention has been paid to mining 

of infrequent itemsets, but it has acquired significant usage in mining of negative association rules from 

infrequent itemset, fraud detection where rare patterns in financial or tax data may suggest unusual activity 

associated with fraudulent behavior, market basket analysis and in bioinformatics where rare patterns in 

microarray data may suggest genetic disorders. Several frequent item set mining including Apriori, FP-Growth 

algorithm, AFOPT algorithm, NONORDFP algorithm, FP_Growth* algorithm, Broglet’s FP-Growth, DynFP-

Growth algorithm, Enhanced FP-Growth algorithm, IFP_min Algorithm and Transaction mapping algorithm 

were proposed. Clustering involves logical grouping of similar items into a single group. The proposed work 

mainly focus on incorporating clustering concepts and some strategies for finding infrequent itemsets. The 

proposed algorithm works in two phases, first it groups the data items then it prunes the frequent itemsets in 
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order to obtain infrequent itemsets. 

 

 II. RELATED WORK  

 

The frequent pattern mining problem is to discover the complete set of all patterns contained in at least a 

specified support threshold λ, of transactions in the transaction database. FP-Growth-like algorithms adopt 

divide-and-conquer method which can be stated as follow: First, it compresses the database representing 

frequent items into a frequent-pattern tree, or FP-tree, which retains the itemset association information. It then 

divides the compressed database into a set of conditional databases (a special kind of projected database), each 

associated with one frequent item or “pattern fragment,” and mines each such database separately[5]. FP-

Growth opened up a new way to efficiently mine frequent pattern. However, its low time and space utilization, 

still need to improve. Many variants of FP-Growth appeared recently. The representations include FP-

Growth*[6] proposed by G.Grahne et al. in 2003 and AFOPT[7][8] proposed by G.Liu et al. at the same year. 

FP-Growth* adopts a new array technique to enhance the operation capability. It constructs a two-dimensional 

array at the same time of building FP-Tree to preserve the support counts of all 2-itemsets. By using this array 

FP-Growth* only need scan FP-Tree once at the time of each recursion, which improve the efficiency of FP-

Growth. AFOPT construct a sample and compact data structure Ascending Frequency Ordered Prefix-Tree 

(AFOPT) based on FP-Tree. The algorithm adopts top-down scan to reduce the number of conditional databases 

and depress the overhead of scanning each conditional database. We have studied on the FP-Growth-like 

algorithm for a long time and already get some achievements, such as F-Miner in [9] and LPS-Miner in [10]. 

 

III. EXISTING SYSTEM  

 

1.1 Apriori Algorithm  
 

Apriori[2] was the first proposed algorithm in association rule mining, to identify the frequent itemsets in the 

large transactional database. Apriori works in two phases. During the first phase it generates all possible 

Itemsets combinations. These combinations will act as possible candidates. The candidates will be used in 

subsequent phases. In Apriori algorithm, first the minimum support is applied to find all frequent itemsets in a 

database and Second, these frequent itemsets and the minimum confidence constraint are used to form rules. 

Apriori Algorithm: 

procedure Apriori (T, minSupport) 

{ 

L1= {frequent items}; 

for (k= 2; Lk-1 !=∅; k++) { 

Ck= candidates generated from Lk-1 for each transaction t in database 

do 

{ 

Lk = candidates in Ck with minSupport 

} 

} 
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return ⋃k Lk ; 

} 

The main drawback of Apriori is the generation of large number of candidate sets. The efficiency of apriori can 

be improved by Monotonicity property, hash based technique, Partioning methods. 

 

1.2 FP-Growth Algorithm 

The drawback of Apriori can be improved by Frequent pattern Growth algorithm[3].This algorithm is 

implemented without generating the candidate sets. This algorithm proposes a tree structure called FP tree 

structure, going to collect information from the database and creates an optimized data structure as Conditional 

pattern. Initially it Scans the transaction database DB once and Collects the set of frequent items F and their 

supports and then Sort the frequent itemsets in descending order as L, based on the support count. This 

algorithm reduces the number of candidate set generation, number of transactions, number of comparisons. 

Algorithm: 

Input: 

-A transactional database DB and a minimum support threshold ξ. 

Output: 

- frequent pattern tree, FP-tree /*phase1: */ 

[1] Scan the transactional database.  

[2] Collect the set of frequent items F and  their supports. Sort F in support descending order as L.  

/* the list of frequent items*/ 

[3] Create the root of an FP-tree, T, and label it as “root” /* for each transaction do */ 

[4] Select and sort the frequent items in Trans according to the order of L.  

[5] perform the insert_tree function  

/* call insert_tree function recursively */ /*phase2: */ 

Input: 

An FP-tree constructed in the above algorithm, D – transaction database; 

s – minimum support threshold. Output: 

The complete set of frequent patterns. 

1.call the FP_Growth function  

2. check if the tree has a sigle path,  

3. then for each combination (denoted as B) of the nodes in the path P do  

4. generate pattern B ∪ A with support=minimum support of nodes in B  

5. else  

6. construct B’s conditional pattern base and B’s conditional  FP-tree.  

7. call the FP_Growth function  

8. check if the tree has a sigle path,  

9. then for each combination (denoted as B) of the nodes in the path P do  

10. generate pattern B ∪ A with support=minimum support of nodes in B  
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11. else  

12. construct FP-Tree 

13. construct B’s conditional pattern base and B’s conditional FP-tree.  

 

1.3  AFOPT Algorithm 

 

Liu et al[4] investigated the algorithmic performance space of the Fpgrowth algorithm. AFOPT algorithm uses 

dynamic ascending frequency order for both the search space exploration and prefix-tree construction, it uses 

the top-down traversal strategy. AFOPT algorithm utilizes dynamic ascending frequency for the item search 

space ,adaptive representation for the conditional database format, physical construction for the conditional 

database construction, and top-down traversal strategy for the tree traversal. The dynamic ascending frequency 

search order can make the subsequent conditional databases shrink rapidly. As a result, it is useful to use the 

physical construction strategy with the dynamic ascending frequency order. 

 

1.4 Transaction Mapping Algorithm 
 

The transaction tree is similar to FP-tree but there is no header table or node link. The transaction tree has 

compact representation of all the transactions in the database. Each node in tree has an id corresponding to an 

item and a counter  

that keeps the number of transactions that contain this item in this path. Here we can compress transaction for 

each itemset to continuous intervals by mapping transaction ids into a different space to a transaction tree. 

Advantage of this algorithm is the performance can be improved compared to FP-Growth, FP-Growth* 

algorithms. 

Algorithm: 

Input: -Databse DB Output: 

-all infrequent item sets 

[1] scan the database and identify the infrequent item sets.  

[2] construct the transaction tree with the count for each node.  

[3] Construct the transaction interval lists.  

[4] Construct the lexicographic tree in a depth first order keeping only the minimum amount of information 

necessary to complete the search. 

 

1.5  The Infrequent Weighted Itemset Miner Algorithm 

 

IWI Miner is a FP-growth-like mining algorithm that performs projection-based itemset mining. Hence, it 

performs the main FP-growth mining steps: (a) FP-tree creation and (b) recursive itemset mining from the 

FPtree index. Unlike FP-Growth, IWI Miner discovers infrequent weighted itemsets instead of frequent 

(unweighted) ones. To accomplish this task, the following main modifications with respect to FP-growth have 

been introduced: (i) A novel pruning strategy for pruning part of the search space early and (ii) a slightly 

modified FP-tree structure, which allows storing the IWI-support value associated with each node. 
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Algorithm (IWI Miner(T,E))  

Input: 

-T, a weighted transactional dataset Input: 

-E, a maximum IWI-support threshold Output: 

-F, the set of IWI satisfying E 1. F=0 /*Initialization*/ 

/*scan T and count the IWI-support of each item */ 

1. count the infrequent weighted item sets with the support value.  

2. create header table which is a data structure which holds information about total weight values.  

3. for each transaction, create equivalent transaction.  

4. create an FP-Tree, for each transaction.  

5. Iterate the process until all transactions are traced.  

6. create conditional pattern base calculate weight value.  

7. obtain the infrequent item sets.  

 

To reduce the complexity of the mining process, IWI Miner adopts an FP-tree node pruning strategy to early 

discard items (nodes) that could never belong to any itemset satisfying the IWI-support threshold. Hence, an 

item(i.e., its associated nodes) is pruned if it appears only in tree paths from the root to a leaf node characterized 

by IWI-support value greater than E. 

 

1.6  HPFP Miner Algorithm 

 

HPFP Miner algorithm is implemented by creating a tree structure where the infrequent itemsets are mined and 

compared with the threshold value and a tree is constructed, where it uses pruning techniques which reduces the 

communication overheads. 
 

Input: Mininmum threshold value MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 

MPI_Comm_rank(MPI_COMM_WORLD,&myid); numprocs-=1; 

MPI_Recv(message,length,MPI_INT,0,99,MPI_COMM_WO RLD,&status); 

insertNode(message,length,numprocs); 

sign=numItem/numprocs; 
 

for(k=0;k<sign;k+=1) 

 

{ 

 

i=k*numprocs+myid; for(j=numItem-i-1;j>=0;j-=1) prune(root+k,j,numItem-i-1); 

/*prune infrequent nodes in HPFP-Tree*/ merge(root+k,numItem-i-1); 

/*merge pruned HPFP-Tree */ delete_tree(k,numItem-1); /*release memory*/ 

} 
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IV. PROPOSED SYSTEM 
 

The proposed Algorithm is based on the concept of clusters to find infrequent itemsets. A cluster is a logical 

grouping of similar or closely resembling itemsets into a single group. 

The proposed Algorithm is given as follows:  

C1= promising infrequent items 

 C2= non-promising infrequent items 

 C3=frequent itemsets. 

Step 1: initialize three clusters 

Step 2: calculate candidate-1 itemsets and their correlation Values. 

Step 3: if ( Candidate(i).value>support value) 

{ 

Add Candidate(i) to C3 

} 

Step 4: else if( Candidate(i).value lies between {supp,supp/2} 

{ 

Add Candidate(i) to C2 

} 

Step 5: else 

{ 

Add Candidate(i) to C1 

} 

Step 6: members in C3 are pruned. 

Step 7: members in C1 are infrequent itemsets of first iteration Step 8: copy C1 to C2 

Step 9: copy C2 to C3 

Step 10: generate next level candidates and goto Step 3. 

Cluster level determines the promising and  non-promising. 

                             

V. CONCLUSION  
 

In this paper a novel algorithm is presented for mining infrequent weighted itemsets form large real-time 

databases. The proposed algorithm uses simple logical grouping of data items using some strategies in order to 

prune frequent itemsets and to find infrequent weighted itemsets. our proposed algorithm scales well and forms 

a non-linear curve i.e., even when the number of transactions or number of distinct items increases the 

computing time varies slightly, unlike previous algorithms which shows a linear variation between computing 

time and performance parameters copmapred to the existing work which involves complex tree data structure 

which has been overcome by use of clustering techniques which scales well and performance has been 

improved with time and space complexity. 
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