
International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.03, Issue No. 03, March 2015 ISSN (online): 2348 – 7550

122 | P a g e

ANALYSIS OF SAMPLE EXECUTABLE FILES USING

OLLYDBG BY ADDITION OF BREAKPOINTS

Dr. Sawtantar Singh Khurmi
1
, Kulvir Singh

2
, Harkirat Singh Brar

3

1
Department of Computer Science & Engg., BMSCE, Sri Muktsar Sahib/ PTU, Jalandhar,(India)

2
Department of Computer Science & Engineering, MIMIT, Malout/ PTU, Jalandhar,(India)

3
Department of Computer Science & Engineering, MIMIT, Malout/ PTU, Jalandhar,(India)

ABSTRACT

Most of the malwares come under the format of executable files. Reverse engineering approach can be applied

for the detail study of malware like its behaviour; code etc. & results of this approach are fed to Antivirus (AV)

in order to generate signatures. So it is important to how to run the executable files under safe conditions. We

have used OllyDbg debugger due to its debugging capabilities, which allow user to execute the most interesting

parts of the malicious program slowly and under highly controlled conditions, so user can better understand the

purpose of code. This paper proposes the steps for the partial execution of any executable file by adding

breakpoints on the specific locations for the safe malware analysis.

Keywords- AV, Malware, Reverse Engineering, OllyDbg, Breakpoint, Executables

I.INTRODUCTION

In computing, an executable file or executable program, or sometimes simply an executable, causes a computer

"to perform indicated tasks according to encoded instructions,"[1] as opposed to a data file that must be parsed

by a program to be meaningful. These instructions are traditionally machine code instructions for a physical

CPU. However, in a more general sense, a file containing instructions (such as bytecode) for a software

interpreter may also be considered executable; even a scripting language source file may therefore be considered

executable in this sense. The exact interpretation depends upon the use; while the term often refers only to

machine code files, in the context of protection against computer viruses all files which cause potentially

hazardous instruction execution, including scripts, are lumped together for convenience. Malware, short for

malicious software, is any software used to disrupt computer operation, gather sensitive information, or gain

access to private computer systems.[1] Malware is defined by its malicious intent, acting against the

requirements of the computer user, and does not include software that causes unintentional harm due to some

deficiency. Reverse Engineering is the art of analyzing a system, software or an object to its minutest detail to

understand its functionality/operation principles. A Malware is reverse engineered to understand the working of

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.03, Issue No. 03, March 2015 ISSN (online): 2348 – 7550

123 | P a g e

a malware and the functionality and capability of the malware. The following are the main reasons to conduct

reverse engineering of a malware: -- Assess damage -- Analyze malware functionality -- Identify vulnerability --

Catch the intruder -- Prepare signatures. The main aim of reverse engineering malware apart from

aforementioned is to understand the attacker’s methodology and skill set. This helps in deeply analyzing the

attacker and thus mitigating future attacks on the network along with planning the removal of malware from the

network.OllyDbg[7] 1.10 is a 32-bit assembler-level analyzing debugger for Microsoft(R) Windows(R) with

intuitive interface. Emphasis on binary code analysis makes it particularly useful in cases where source is

unavailable. It predicts contents of registers, recognizes procedures, API calls, switches, tables, constants and

strings, locates routines from object files and libraries, allows custom labels and comments in disassembled

code, writes patches back to executable file and more. OllyDbg can parse compiled Windows executables and,

acting as disassembler, display their code as Intel x86 assembly instructions. OllyDbg also have debugging

capabilities, which allow user to execute the most interesting parts of the malicious program slowly and under

higher controlled conditions, so user can better understand the purpose of code.

II NEED OF ANALYSIS

Executable files are most frequently used in the Computer Systems. Most of the malwares come under the

format of executable files. So it is very important for the user or the system to must be aware before running any

executable file. Thus analysis is required for any executable file. Broadly malware analysis is of two categories:

Static [5] & Dynamic [5]. Static analysis is study of the code step by step without completing its execution i.e.

malicious code will be examined without executing or partially executing it. Static analysis is the safe analysis.

On the other hand, Dynamic Analysis is the examining of the malicious code by executing it. It may cause

damage to the system in which analysis is going on. Generally dynamic analysis is performed in the

environment which can be sacrificed or in the virtual environment.

III METHODOLOGY

OllyDBg tool is used to perform analysis of the notepad.exe file. Here partial execution will be done by adding

the breakpoints. Now the question is where to add breakpoint? As Dynamic Link Libraries[3] are responsible for

system calls so breakpoints will be added on kernel32.dll file. It is must for the analyst to know the behaviour of

executable file like no. of files created, no. of process created, no. of ports opened, and registry changes etc. As

every time when notepad.exe is executed it creates a new file. So, in order to stop this event breakpoint should

be applied over CreateFile function. There are two create file functions-CreateFileA & CreateFileW.

CreateFileA is just a wrapper to convert ASCII to Unicode. CreateFileW is for the unicode and is always called

for the creation of file. So finally breakpoint will be added at CreateFileW function in order to stop the

execution of notepad.exe. Step by step snapshots for whole settings is shown below:

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.03, Issue No. 03, March 2015 ISSN (online): 2348 – 7550

124 | P a g e

Fig. 1: Normal execution of Notepad.Exe without any breakpoint

Fig. 2: Addition of breakpoint through executable module

Fig. 3: Chossing Kernel.dll file

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.03, Issue No. 03, March 2015 ISSN (online): 2348 – 7550

125 | P a g e

 Fig. 4: Viewing names

Fig. 5: Selecting CreteFileW function

 Fig. 6: Addition of Breakpoint

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.03, Issue No. 03, March 2015 ISSN (online): 2348 – 7550

126 | P a g e

Fig. 7: Partial Execution of Notepad.exe

Above diagrams are the execution traceouts of OllyDbg for the partial execution of notepad.exe. It shows the

step by step description how to add breakpoints on the kernell32.dll file by exploring the names of variuos under

it.

IV RESULTS

Table 1: Mnemonic codes for normal & partial execution

Normal execution of

Notepad .exe without

breakpoint

 Execution of Notepad .exe

with breakpoint

Message for Partial

Execution

EAX 00000000

ECX 00960000

EDX 7C90E514

ntdll.KiFastSystemCallRet

EBX 00000000

ESP 0007EC30

EBP 0007ED24

ESI 00000000

EDI 00000000

EIP 7C90E514

EAX 40000000

ECX 00000000

EDX 0000051E

EBX 0007E6A8 UNICODE

"\\.\PIPE\lsarpc"

ESP 0007E688

EBP 0007E6E8

ESI 7C80934A

kernel32.GetTickCount

EDI 0007E6C8

0007E688 77E84B2A /CALL

to CreateFileW from

RPCRT4.77E84B24

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.03, Issue No. 03, March 2015 ISSN (online): 2348 – 7550

127 | P a g e

ntdll.KiFastSystemCallRet

C 0 ES 0023 32bit 0(FFFFFFFF)

P 1 CS 001B 32bit 0(FFFFFFFF)

A 1 SS 0023 32bit 0(FFFFFFFF)

Z 0 DS 0023 32bit 0(FFFFFFFF)

S 1 FS 003B 32bit

7FFDF000(FFF)

T 0 GS 0000 NULL

D 0

O 0 LastErr ERROR_SUCCESS

(00000000)

EFL 00000296

(NO,NB,NE,A,S,PE,L,LE)

ST0 empty

5.0301169441683534340e-4932

ST1 empty +UNORM 013A

00000000 000102D9

ST2 empty

0.0000064189652390030e-4933

ST3 empty

0.0000040080005616620e-4933

ST4 empty +UNORM 0010

0000000E 01001394

ST5 empty -NAN FFFF 806D9295

B217A3DC

ST6 empty -

4.1821731292504411550e-2917

ST7 empty +UNORM 0001

00000081 BC6B5E88

 3 2 1 0 E S P U O Z D I

FST 4020 Cond 1 0 0 0 Err 0 0 1 0

0 0 0 0 (EQ)

FCW 027F Prec NEAR,53 Mask

1 1 1 1 1 1

EIP 7C810800

kernel32.CreateFileW

C 0 ES 0023 32bit 0(FFFFFFFF)

P 1 CS 001B 32bit 0(FFFFFFFF)

A 0 SS 0023 32bit 0(FFFFFFFF)

Z 0 DS 0023 32bit 0(FFFFFFFF)

S 0 FS 003B 32bit 7FFDE000(FFF)

T 0 GS 0000 NULL

D 0

O 0 LastErr ERROR_NO_TOKEN

(000003F0)

EFL 00000206

(NO,NB,NE,A,NS,PE,GE,G)

ST0 empty -UNORM BDEC

01050104 00730065

ST1 empty +UNORM 0064

006F005C 006E006F

ST2 empty +UNORM 006C

006F005C 00300031

ST3 empty +UNORM 006E

0069002E 00670062

ST4 empty 0.0

ST5 empty 0.0

ST6 empty

1.0000000000000000000

ST7 empty

1.0000000000000000000

 3 2 1 0 E S P U O Z D I

FST 4020 Cond 1 0 0 0 Err 0 0 1 0

0 0 0 0 (EQ)

FCW 027F Prec NEAR,53 Mask

1 1 1 1 1 1

Above table shows the register status/contents during normal execution and partial execution

with breakpoints. Here breakpoint has stopped the remote procedure call (RPCRT4), which does

not allow creating of a new file.

International Journal of Advanced Technology in Engineering and Science www.ijates.com

Volume No.03, Issue No. 03, March 2015 ISSN (online): 2348 – 7550

128 | P a g e

V CONCLUSION & FUTURE SCOPE

Here a simple notepad.exe is used as a sample for executable file. This work provides the detail usage

of OllyDbg tool for the partial execution. It concludes that most of the malicious code creates the new

files during its execution. So such creation can be stopped by adding breakpoints and restricting the

malware to partial execution. In future, same steps can be used for the analysis of any malicious file.

REFERENCES

[1] “A Cyveillance Analysis August 2010: Malware detection rates for leading AV solutions.”

https://www.cyveillance.com/web/docs/WP_MalwareDetectionRates.pdf. Last accessed Feb.10,2013.

 [2]Jacob, G. Debar, H. & Filiol, E., "Behavioral detection of malware: From a survey towards an established

taxonomy", Journal in Computer Virology, 4, 251–266, 2008.

 [3] Gil Tahan, Lior Rokach and Yuval Shahar, “Automatic Malware Detection Using Common Segment

Analysis and Meta-Features”, Journal of Machine Learning Research, pp- 949-979, 2012.

 [4] Mohammad Nour Saffaf: Malware Analysis Bachelor‟s Thesis., Helsinki Metropolia University of Applied

Sciences, May 27, 2009.

[5] Vinod P. V.Laxmi,M.S.Gaur, “Survey on Malware Detection Methods”, 3rd Hackers Workshop on

Computer and Internet Security, Department of Computer Science and Engineering, Prabhu Goel Research

Centre for Computer & Internet Security,IIT, Kanpur, pp-74-79, March,2009.

[6] Eilam, Eldad (2005). “Reversing: secrets of reverse engineering” Wiley. p. 118. ISBN 978-0-7645-7481-8.

[7] Ferguson, Justin; Kaminsky, Dan (2008). “Reverse engineering code with IDA Pro.” Syngress.

p. 130. ISBN 978-1-59749-237-9.

http://books.google.com/books?id=WaNQAAAAMAAJ
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-7645-7481-8
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-1-59749-237-9

