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ABSTRACT 

A wireless sensor network consists of collection of sensor nodes deployed over a geographical area for 

monitoring different parameters. The power source of sensor node consists of a battery with a limited energy 

and it is impossible to recharge the battery, because nodes may be deployed in an unmanned or remote area. 

Most of the power is consumed by the radio communication involved in the sensor network. So an energy 

efficient communication scheme has to be designed to improve the network lifetime. DSR protocol is a reactive 

protocol that makes it possible for all the nodes to find a route to a destination in a multiple network hops 

dynamically. The network lifetime reduces by forwarding data with more transmission power. The intermediate 

nodes spend more energy to transmit its own data and forward other nodes data. Therefore the intermediate 

node drains out of energy soon. To solve this problem the transmission power has to adjusted for different 

transmissions in the network according to distance towards the destination. The simulation is done using 

TOSSIM simulator tool. 

 

Keywords: DSR (Dynamic Source Routing) Protocol, Intermediate Nodes, Network Lifetime, 

Transmission power level, WSN (Wireless Sensor Network 

 

I. INTRODUCTION 

 

Wireless sensor network (WSN) is the collection of sensor nodes that performs a given task with coordination 

and in-network processing. These nodes have the potential of sensing, processing and communication of data 

with each other wirelessly. The basic task of sensor networks is to sense the events, collect data and send it to 

their destination. On the other hand, WSNs are power constrained distributed systems with low energy, low 

bandwidth and shorter communication range.  

  

Figure 1: Power Consumption of Different Subsystem of A Sensor Node 
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Sensor networks require sensing systems that are long-lived and environmentally resilient. Power consumption 

needs to be taken into account as a design constraint. Out of all functions in a sensor node, the radio 

communication draws most of the energy as shown in Figure 1.  

The wireless sensor node has a constrained power source and replenishment of power may be limited or 

impossible altogether. In this work micaz motes are considered. Battery operation for sensors used in 

commercial applications is typically based on two AA alkaline cells or one Li-AA cell. Power management and 

power conservation are critical functions for sensor networks, and one needs to design energy efficient protocols 

and algorithms. The function of a sensor node in a sensor field is to detect events, perform local data processing, 

and transmit processed data. Power consumption can therefore be allocated to three functional domains: sensing, 

communication, and data processing, each of which requires optimization. In the context of communications, in 

a multi hop sensor network a node may play the dual role of data collection and processing and of being a data 

relay point. Most of the power is consumed by the radio communication. So an energy efficient communication 

scheme has to be designed to improve the network lifetime.  

 

II. RELATED WORK 

 

M. N. Jambli and et al [1] evaluated the capability of AODV on how far it can react to network topology change 

in Mobile WSN. They investigated the performance metrics namely packet loss and energy consumption of 

mobile nodes with various speed, density and route update interval (RUI), for 9 nodes in (100×100) m
2
 network. 

The presented results showed a high percentage of packet loss and the reduction in total network energy 

consumption of mobile nodes if RUI is getting longer due to serious broken link caused by nodes movement. 

 Ali Abdul-Majed Ihbeel  and Hasein Issa Sigiuk [2] made an attempt to evaluate the performance of DSR 

routing protocol using some simulation network models, to investigate how well this protocol performs on 

WSNs, in static and mobile environments, using NS-2 simulator. The performance study will focus on the 

impact of the network size, network density (up to 450 nodes), and the number of sources (data connections). 

The performance metrics used in this work are average end-to-end delay, packet delivery fraction, routing 

overheads, and average energy consumption per delivered packet. 

 

III. DYNAMIC SOURCE ROUTING PROTOCOL (DSR) 

 

One of the reactive protocols is dynamic source routing protocol. This protocol makes it possible for all the 

nodes to find a route to a destination in a multiple network hops dynamically. The distinguishing features of 

DSR are: low network overhead, no extra infrastructure for administration and the use of source routing. Source 

routing implies that the sender had full knowledge of the complete hop-by-hop route information to the 

destination. The protocol is composed of the two main mechanisms of Route Discovery and Route Maintenance. 

Normally routes are stored in a route cache of each node. When a node likes to communicate to a destination, 

first it checks for the route for that particular destination in the route cache. If yes, the packets are sent with 

source route header information to the destination. In the other case, if the route is not available at the route 

cache; then the node will initiate the route discovery mechanism to get the route first [2]. 

The route discovery mechanism will flood the network with route request (RREQ) packets, and then the 

neighbors will receive RREQ packets and check for the route to destination in their route cache. If the route is 

not in their caches rebroadcast the RREQ, otherwise the node replies to the originator with a route reply (RREP) 
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packet. Since RREQ and RREP packets both are source routed, original source can obtain the route and add to 

its route cache. In any case the link on a source route is broken; the source node is notified with a route error 

(RERR) packet. Once the RERR is received, the source removes the route from its cache and route discovery 

process is reinitiated.  

DSR being a reactive routing protocol has no need to periodically flood the network for updating the routing 

tables like table-driven routing protocols do. Intermediate nodes are able to utilize the route cache information 

efficiently to reduce the control overhead. 

DSR minimizes the overall network bandwidth overhead because of the fact that it does not use periodic routing 

messages. By doing so DSR saves battery power as well as avoidance of routing updates that are large enough. 

However there is a support from the MAC layer that informs the routing protocol of any failure in nodes in 

DSR. In DSR protocol the forwarding nodes do not save the up-to date routing information, thus DSR takes the 

use of source routing. DSR describes a flow id option that allows packets to be transmitted on a hop-by-hop 

basis. This protocol is based on source routing where all the routing information is maintained at mobile nodes.  

It has two major phases, which are Route Discovery and Route Maintenance. Route Reply would be created 

only if the message has reached the correct destination node. 

All the known routes are stored in the cache by DSR. When a node wants to send data to another node, it first 

broadcasts an RREQ as shown in Figure 1. This RREQ is received by other nodes and as they receive it they 

start searching their cache for any available route to the destination node. In case on any unavailable routes this 

RREQ is forwarded while the address of the current node is being recorded in the hop sequence.  

The RREQ propagates in the network until the availability of a route to the destination or the availability of the 

destination itself. When this happens an RREP is generated and unicasted to the source node. The contents of 

this RREP packet are the sequence of hops in the network for reaching the destination node. In the discovery of 

an invalid route an error packet is sent to the source node and once this error packet is received, the hop that has 

error is removed from the cache of the host and all routes containing this erroneous hop are deleted. 

 

Figure 1- Route Discovery 

To make the best use of the limited energy available to the sensor nodes, and hence to enhance the network 

lifetime, it is important to design modulation scheme, transmit power and hop distance parameters in the 

network stack. To solve the problems of minimizing energy to send data and finding optimum energy-efficient 

transmit distances, the concept of energy per bit metric is used [3].  

This metric defines a way of comparing energy consumption, the energy per bit (EPB) metric as: 

EPB= (BD + BP)   (PT + αPR) T                                                                                                                     (1)                                                                                                                   

                 BD 
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BD is the average number of data bits and BP is the average number of preamble bits. The terms PT and PR are 

transmit and receive power, respectively. The parameter α is determined by the MAC protocol and represents 

the proportion of time spent in receive mode compared to the proportion of time spent in transmit mode. Finally, 

T is the time to transmit a bit. 

The energy consumed when sending a packet of m bits over one hop wireless link can be expressed as[13], 

EL (m,d)  = {ET (m,d) + PTTst + Eencode } + {ER (m) + PRTst + Edecode}                                                          (2)                                                           

ET  is energy used by the transmitter circuitry and power amplifier , ER is energy used by the receiver circuitry, 

PT  is power consumption of the transmitter circuitry, PR is power consumption of the receiver circuitry, Tst is 

startup time of the transceiver, Eencode is energy used to encode, Edecode is the energy used to decode. 

Assuming a linear relationship for the energy spent per bit at the transmitter and receiver circuitry ET and ER can 

be written as[13],  

ET (m,d) = m ( eTC + eTAd
α 

)                                                                                                                           (3)                                                                                                              

ER(m) = meRC                                                                                                                                                                                                                                           (4)                                                                                                                                                                                                  

eTC, eTA, and eRC are hardware dependent parameters and α is the path loss exponent whose value varies from 2 

(for free space) to 4 (for multipath channel models). The effect of the transceiver startup time, Tst, will greatly 

depend of the type of MAC protocol used[13]. To minimize power consumption it is desired to have the 

transceiver in a sleep mode as much as possible however constantly turning on and off the transceiver also 

consumes energy to bring it to readiness for transmission or reception. eTA can be expressed as, 

eTA  =   (S/N)r (NFrx) (No) (BW) (4π / λ)
α
                                                                                                      (5)                                                                                             

                   ( Gant)  ( ηamp )  ( Rbit ) 

Where, 

(S/N)r = minimum required signal to noise ratio at the receiver’s demodulator for an acceptable Eb/N0 

NFrx   = receiver noise figure  

N0      = thermal noise floor in a 1 Hertz bandwidth (Watts/Hz)  

BW    = channel noise bandwidth  

λ = wavelength in meters  

α  = path loss exponent  

Gant  = antenna gain 

ηamp = transmitter power efficiency 

Rbit  = raw bit rate in bits per second 

 

 

 

IV. POWER SCENARIOS 

There are two possible power scenarios 

4.1. Variable Transmission Power 

 In this case the radio dynamically adjust its transmission power so that (S/N)r is fixed to guarantee a certain 

level of Eb/N0 at the receiver. The transmission energy per bit is given by[13], 

Transmission energy per bit  = eTAd
α
 = ζ (S/N)r d

α
                                                                                        (6)                                                                                                                                                                                                             
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Since (S/N)r is fixed at the receiver this also means that the probability p of bit error is fixed to the same value 

for each link. 

4.2. Fixed Transmission Power 

In this case the radio uses a fixed power for all transmissions. This case is considered because several 

commercial radio interfaces have a very limited capability for dynamic power adjustments[13]. In this case it is 

fixed to a certain value (ETA) at the transmitter and the (S/N)r at the receiver will then be, 

 (S/N)r  =  (ETA ) / (ζ d
α
)                                                                                                                    (7)                                                                                                                                                                                                                      

Since for most practical deployments d is different for each link then (S/N)r will also be different for each link. 

This translates on a different probability of bit error for wireless hop. 

In this work a DSR protocol performance is studied and analyzed under variable and fixed transmission power. 

According to the distance between two nodes the transmission power can be adjusted. Thereby we can reduce 

the consumption of power.  Evaluating DSR protocol under various transmission power outperforms the fixed 

range transmission. 

 

V. TOSSIM 

 

TOSSIM captures the behavior and interactions of networks of thousands of TinyOS motes at network bit 

granularity. Figure2 shows a graphical overview of TOSSIM.  

 

Figure 2: TOSSIM Architecture: Frames, Events, Models, Components, and Services 

The TOSSIM architecture is composed of five parts: support for compiling TinyOS component graphs into the 

simulation infrastructure, a discrete event queue, a small number of re-implemented TinyOS hardware 

abstraction components, mechanisms for extensible radio and ADC models, and communication services for 

external programs to interact with a simulation. TOSSIM takes advantage of TinyOS’s structure and whole 

system compilation to generate discrete-event simulations directly from TinyOS component graphs. It runs the 

same code that runs on sensor network hardware. By replacing a few low-level components (e.g., those shaded 

in Figure 2), TOSSIM translates hardware interrupts into discrete simulator events; the simulator event queue 

delivers the interrupts that drive the execution of a TinyOS application. The remainder of TinyOS code runs 

unchanged. TOSSIM uses a very simple but surprisingly powerful abstraction for its wireless network. The 

network is a directed graph, in which each vertex is a node, and each edge has a bit error probability [4]-[6]. 

Compiling to native code allows developers to use traditional tools such as debuggers in TOSSIM. As it is a 

discrete event simulation, users can set debugger breakpoints and step through what is normally real-time code 

(such as packet reception) without disrupting operation. It also provides mechanisms for other programs to 
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interact and monitor a running simulation; by keeping monitoring and interaction external to TOSSIM, the core 

simulator engine remains very simple and efficient [7]. 

 

VI. POWERTOSSIM Z 

 

Hardware power consumption has been incorporated into implementation of PowerTOSSIM z. Capturing the 

power consumption of an application running on a given mote necessitates tracking of the behaviour of the 

mote’s low level components, such as the microcontroller and the radio chip. An energy estimator must also 

take into account the interfaces that TinyOS exports to manage them, and their support within TOSSIM.[11] 

6.1 Tinyos Interfaces 

The TinyOS 2.x power management interfaces are a major improvement over those implemented in TinyOS 1.x. 

As stated in TEP 112 [8], TinyOS 1.x essentially relied on the application itself to handle the power on/power 

off states of all the devices. This was accomplished through the use of the StdControl interface, which exports a 

start and a stop command that any component can call over a given peripheral. This approach simplified the 

design of PowerTOSSIM 1.x, since most of the calls could then be placed where this interface was 

implemented, to gain a complete view of the mote’s power state. TinyOS 2.x operates differently in that it 

divides the devices in two classes[11]: 

1. The microcontroller, which fundamentally has enough information to independently calculate the power 

stateto use. 

2. The peripherals, which have simpler semantics (with the partial exception of the CC2420 Radio Chip, as we 

will see later on) and two basic power states, on and off. 

The relevant power management interfaces and their associated hardware are described in more detail 

below.Only the devices relevant to our PowerTOSSIM z implementation will be analyzed, with particular 

emphasis on TOSSIM support and its limitations. This description is at the heart of the design goals and 

implementation of PowerTOSSIM z, and any future improvements. 

6.2 Microcontroller Power Management: The Atm128 Mcu 

The Atmega128 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture [9]. 

It features six software selectable power-save states (shown in Table 1) which range from the IDLE state, which 

stops the CPU while leaving all the other components active, down to the POWERDOWN state, which disables 

all the components until the next interrupt or hardware reset. TinyOS exports one interface for the handling of 

the microcontroller, which is called McuSleep, which exposes a single asynchronous command, sleep(), that is 

called inside the TinyOS scheduler when the FIFO task queue is empty. The job of the sleep() command is to 

calculate the correct power state in which to put the microcontroller. The task requires analysis of the state of 

different registers[11].  

 

 

Table 1: Atmega128 Power states 

POWER STATE CURRENT 

Active   8mA 

Idle       4mA 

Standby 1mA 
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ADC Noise Reduction 1mA 

Extended Standby   160μA 

Power-save 9μA 

Power-down       0.3μA 

 

RADIO  CURRENT 

Rx 7.03 mA 

Tx (power = 00) 3.72 mA 

Tx (power = 01) 5.21 mA 

Tx (power = 03) 5.37 mA 

Tx (power = 06) 6.47 mA 

Tx (power = 09) 7.05 mA 

Tx (power = 0F) 8.47 mA 

Tx (power = 60) 11.57 mA 

Tx (power = 80) 13.77 mA 

Tx (power = C0) 17.37 mA 

Tx (power = FF) 21.48 mA 

 

This result is compared to the actual  lowest possible state to which the MCU is allowed to go. Since some 

external peripherals may require the MCU to not go below a given power state (for example if it will require the 

CPU soonand the tradeoff between time spent in a low-power state and wake-up latency is not favorable), 

TinyOS allows them to specify the lowest acceptable power state through the Mcu Power Override. Lowest 

State() command. Despite first appearances, TOSSIM does not offer support for fine tracking of the behaviour 

of the microcontroller. A port of the Mcu Sleep components exists, together with a representation of the 

hardware registers as entries in a global array of uint8_t entries. However, these registers are never modified, 

and the Mcu Sleep component itself is not wired inside the TOSSIM scheduler (which is missing a call to the 

sleep() command when there are no tasks available). The power state of the microcontroller is of some 

importance to our battery model: we assume that battery recovery can only take place with the MCU in 

POWERSAVE or POWERDOWN modes. Therefore the TOSSIM scheduler is extended to call Mcu Sleep. 

sleep() and we basic tracking of some of the components’ state is performed to allow Power TOSSIM 2 to report 

meaningful values for the MCU state. The atm128 implementation also tracks the use of the LED and other 

ports. LEDs are connected to Port G of the atm128 microcontroller, a 5 bit port. Bits 0, 1 and 2 are used to 

directly manipulate the LED state, while bit 4 acts as a broadcast bit (controlling all the three LEDs at the same 

time). The state of the SPI bus can be derived from the use of the flash and the radio stack (which both use the 

SPIbus). TOSSIM uses the Simple Fcfs Arbiter to emulate the atm128 SPI bus (which allows some tracking of 

the resources requiring and releasing the SPI bus)[11]. 

6.3 Peripheral Power Management 

TinyOS 2.x divides the power management interfaces into two distinct classes, the microcontroller and the 

peripherals. A richer set of interfaces (with respect to TinyOS 1.x) is offered for power management of 

peripherals, described in TEP 115 [10] which can be categorized into two different models: explicit power 

management and implicit power management. Our work does not focus on the latter (as used by the at45db flash 
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memory components); simplistically, it can be understood as powering on or off a given device with the explicit 

power management interface once the resource has been granted (in the case of the at45db interface, the SPI 

bus). A more detailed description is available in [10]. 

 

VII. SIMULATION RESULTS 

7.1 Energy Consumption 

Figure 3 shows the energy consumption per delivered packet: This measure the energy expended per delivered 

data packet.  

 

Figure 3- Comparison of Energy Consumption 

7.2 Throughput 

It is the rate of successful message delivery over a communication channel as shown in Figure 4. Throughput is 

measured in bits per second (bit/s or bps) 

 

Figure 4- Comparison of Throughput 

VIII. CONCLUSION 

 

On comparing the performance of DSR protocol under fixed and variable power transmission is studied and 

analyzed. Power transmissions when varied according to the number of hops in-between seems to be more 

energy-efficient compared to fixed power transmission in wireless sensor network. Therefore the network 

lifetime can be enhanced. 
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