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ABSTRACT  
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I. INTRODUCTION 

 

In 1942, Professor Karl Menger [7] has introduced the theory of probabilistic metric space in which a 

distribution function was used instead of non-negative real number as value of the metric. The notion of PM-

space corresponds to situations when we do not know exactly the distance between two points, but we know 

probabilities of possible values of this distance.  Such a probabilistic generalization of metric spaces appears to 

be well adapted for the investigation of physical quantities and physiological thresholds. It is also of 

fundamental importance in probabilistic functional analysis. The development of fixed point theory in PM-

spaces was due to Schweizer and Sklar [11]. Sehgal and Bharucha-Reid [12] obtained a generalization of 

Banach Contraction Principle on a complete Menger space which is a milestone in developing fixed-point 

theory in Menger space. 

Jungck and Rhoades [6] termed a pair of self maps to be coincidentally commuting or equivalently weakly 

compatible if they commute at their coincidence points. Sessa [13] initiated the tradition of improving 

commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces.  

Jungck [5] soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger 

space has been introduced by Mishra [8].   

Cho, Murthy and Stojakovik [1] proposed the concept of compatible maps of type (A) in Menger space and gave 

some fixed point theorems. Recently, using the concept of compatible mappings of type (A), Jain et. al. [3, 4] 

proved some interesting fixed point theorems in Menger space. In the sequel, Patel and Patel [10] proved a 
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common fixed point theorem for four compatible maps of type (A) in Menger space by taking a new inequality. 

Recently, in 2013, Jain et. al. [2] proved a common fixed point theorem using the concept of semi-compatibility 

and occasionally weak compatibility in Menger space. 

In this paper a fixed point theorem for six self maps has been proved using the concept of occasionally weak 

compatibility and compatibility of type () which generalizes the result of Pant et. al. [9]. We also cited an 

example.  

 

II. PRELIMINARIES 

 

Definition 2.1.[7]  A mapping F : R R+ is called a  distribution if it is non-decreasing left continuous with inf 

{ F (t) | t  R } = 0    and    sup { F (t) | t   R} = 1. 

We shall denote by L the set of all distribution functions while H will always denote the specific distribution 

function defined by  

  0 , t 0
H(t) .

1 , t 0


 



 

Definition 2.2. [2] A mapping t :[0, 1] × [0, 1]  [0, 1] is called a t-norm  if  it  satisfies the following 

conditions : 

(t-1)   t(a, 1) = a,       t(0, 0) = 0 ; 

(t-2)   t(a, b) =  t(b, a) ; 

(t-3)   t(c, d)   t(a, b) ;     for c  a, d  b, 

(t-4)   t(t(a, b), c) =  t(a, t(b, c))  for all a, b, c, d [0, 1]. 

Definition 2.3. [2] A probabilistic metric space (PM-space) is an ordered pair (X, F) consisting of a non empty 

set X and a function F : X × X  L, where L is the collection of all distribution functions and the value of F at 

(u, v)  X × X is represented by  Fu, v. The function Fu,v assumed to satisfy the following conditions: 

(PM-1 ) Fu,v(x) = 1, for all x > 0, if and only if  u = v; 

(PM-2) Fu,v (0) = 0; 

(PM-3) Fu,v = Fv,u; 

(PM-4) If Fu,v (x) = 1 and Fv,w (y) = 1 then Fu,w (x + y) = 1, for all u,v,w  X and x, y > 0.  

Definition 2.4. [2] A Menger space is a triplet (X, F, t) where (X, F) is a  PM-space and t is a t-norm such that 

the inequality 

(PM-5) Fu,w (x + y)  t {Fu, v (x), Fv, w(y) }, for all u, v, w X, x, y  0. 

Definition 2.5. [11] A sequence {xn} in a Menger space (X, F, t) is said to be convergent and converges to a 

point x in X if and only if for each  > 0 and  > 0, there is an integer M(, ) such that   

   Fxn, x () > 1 -   for all n  M(, ).   

Further the sequence {xn} is said to be Cauchy sequence if for   > 0 and   > 0, there is an integer M(, ) such 

that  

   Fxn, xm
() > 1-   for all m, n  M(, ).  
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A Menger PM-space (X, F, t) is said to be complete if every Cauchy sequence in X converges to a point in X. 

A complete metric space can be treated as a complete Menger space in the following way : 

Proposition 2.1. [3] If (X, d) is a metric space then the metric d induces mappings F : X × X  L,  defined by 

Fp,q(x) = H(x - d(p, q)), p, q X, where  

  H(k) = 0,    for k  0   and   H(k) = 1,   for k >0. 

Further if,  t : [0,1] × [0,1] [0,1] is defined by t(a,b) = min {a, b}.  Then (X, F, t) is a Menger space.  It is 

complete if (X, d) is complete. 

The space (X, F, t) so obtained is called the  induced Menger space. 

Definition 2.6. [6] Self mappings A and S of a Menger space (X, F, t) are said to be weak compatible if they 

commute at their coincidence points i.e. Ax = Sx   for x X  implies  ASx = SAx. 

Definition 2.7. [8] Self mappings A and S of a Menger space (X, F, t) are said to be compatible if  

FASxn, SAxn
(x)  1 for all x > 0, whenever {xn} is a sequence in X such that Axn, Sxn  u for some u in X, 

as n . 

Definition 2.8. [1] Self maps S and T of a Menger space (X, F, t) are said to be compatible of type () if  

FSSxn, TTXn 
(x)  1 for all  x  > 0,  whenever {xn} is a sequence in X such that Sxn, Txn  u for some u in X, 

as n . 

Definition 2.9. [9] Self maps S and T of a Menger space (X, F, t) are said to be semi-compatible if FSTxn, Tu 

(x)  1 for all x  > 0,  whenever {xn} is a sequence in X such that Sxn, Txn  u for some u in X, as n . 

Definition 2.10. [2] Self maps A and S of a Menger space (X, F, t) are said to be occasionally weakly 

compatible (owc) if and only if there is a point x in X which is coincidence point of A and S at which A 

and S commute. 

Remark 2.1. [2] The concept of occasionally weakly compatible is more general than that of weak 

compatibility.  

Now, we give an example of pair of self maps (I, L) which are compatible of type () but not-semi-compatible. 

Example 2.1. Let (X, d) be a metric space where X = [0, 1] and (X, F, t) be the induced Menger space with  

Fx,y = 
t

t d(x,y)
 for all t > 0. 

Define self maps I and L as follows : 

I(x) = x  for all x X   and  

1
x, if 0 x

2
L(x)

1
1, if x 1.

2


 

 
  


    

Taking  
n

1 1
x

2 n
   ,  we get  Ixn =  xn = 

1 1

2 n
    and Lxn = 

1 1

2 n
 . 

Thus,  Lxn  
1

2
   as n  and  Ixn  

1

2
 , as n . 

Hence,  x =  
1

2
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Since Lxn = 
1 1

2 n
  

Therefore, ILxn = 
1 1

I
2 n

 
 

 
  =  

1 1

2 n
  

and      LLxn = 1 1
L

2 n

 
 

 
  = 

1 1

2 n
 . 

Consider   
1 1 1 1n n
2 n 2 n

ILx ,LLx ,n n
limF (t) limF (t)

  
 = 1 for t > 0. 

Also, LIxn =
1 1

L
2 n

 
 

 
 = 1 1

2 n
    and    IIxn =

1 1
I

2 n

 
 

 
 = 

1 1

2 n
 . 

Consider   
1 1 1 1n n
2 n 2 n

LLx ,IIx ,n n
limF (t) limF (t)

  
 = 1  for t > 0. 

Therefore, by definition, (I, L) is compatible mapping of type (A). 

Now,  
1 1n
2 n

ILx ,Lx ,1n n
limF (t) limF (t)

 
  < 1  for t > 0. 

Therefore, (I, L) is not semi-compatible mapping. Thus the pair  (I, L) of self maps is compatible of type () but 

not semi-compatible.  

Remark 2.2. In view of above example, it follows that the concept of compatible maps of type () is more 

general than that of semi-compatible maps.   

Lemma 2.1. [15] Let {xn} be a sequence in a Menger space (X, F, t) with continuous t-norms t and t(a, a) a. If 

there exists a constant k(0, 1) such that Fxn,xn+1
(kt) Fxn-1, xn

(t) for all t 0 and n = 1, 2, 3, ..., then {xn} is 

a Cauchy sequence in X.  

Lemma 2.3. [15] Let (X, F , t) be a Menger space. If there exists a constant k (0, 1) such that  

 Fx, y(kt) Fx, y(t) for all x, y X and t > 0, then x = y.  

A class of implicit relation.  Let be the set of all real continuous functions : (R+)4 R, non-decreasing in 

the first argument with the property : 

a. For u, v 0,  (u, v, v, u) 0  or  (u,v,u,v)0 implies that u v. 

b. (u, u, 1, 1) 0 implies that u 1. 

Example 2.3. Define  (t1,t2,t3,t4) = 18t1 - 16t2 + 8t3 - 10t4.  Then . 

 

III. MAIN RESULT 

 

Theorem 3.1. Let A, B, L, M, S and T be self mappings on a complete Menger space  (X, F, t) with  t(a, a)  a,  

for some a  [0, 1], satisfying : 

(3.1.1) L(X)   ST(X),  M(X)   AB(X); 

(3.1.2) ST(X) and AB(X) are complete subspace of X; 

(3.1.3) either AB or L is continuous;  

(3.1.4)  (L, AB) is compatible maps of type () and  (M, ST)  is occasionally weak compatible; 

(3.1.5) for some , there exists k (0, 1) such that for all x, y X and t > 0,  

  (FLx, My(kt), FABx, STy(t), FLx, ABx(t), FMy, STy(kt))  0 
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then  A, B, L, M, S and T have a unique common fixed point in X.   

Proof. Let x0  X.  From condition (3.1.1)    x1, x2  X  such that   

  Lx0 = STx1 = y0     and     Mx1 = ABx2 = y1.   

Inductively, we can construct sequences {xn} and {yn} in X such that 

 Lx2n = STx2n+1 = y2n      and      Mx2n+1 = ABx2n+2 = y2n+1     

        for n = 0, 1, 2, ... .  

Step 1.  Putting  x = x2n and  y = x2n+1  in (3.1.5), we get 

 (FLx2n, Mx2n+1
(kt), FABx2n, STx2n+1

(t), FLx2n, ABx2n
(t), FMx2n+1, STx2n+1

(kt))  0. 

Letting n , we get 

 (Fy2n, y2n+1
(kt), Fy2n-1, y2n

(t), Fy2n, y2n-1
(t), Fy2n+1, y2n

(kt))  0. 

Using (a), we get 

 Fy2n, y2n+1
(kt)  Fy2n-1, y2n

(t). 

Therefore, for all n even or odd, we have 

 Fyn, yn+1
(kt)  Fyn-1, yn

(t). 

Therefore, by lemma  2.1, {yn} is a Cauchy sequence in X, which is complete.  

Hence {yn}  z X.  Also its subsequences converges as follows : 

{Lx2n}   z,   {ABx2n}     z,    {Mx2n+1}    z  and {STx2n+1}    z.  

Case I.   When AB is continuous. 

As AB is continuous, (AB)2x2n   ABz  and  (AB)Lx2n   ABz. 

As (L, AB) is compatible pair of  type (), so  

LLx2n   (AB)(AB)x2n  and so LABx2n ABz 

Step 2.  Putting  x = ABx2n  and  y = x2n+1  in (3.1.5), we get 

(FLABx2n, Mx2n+1
(kt), FABABx2n, STx2n+1

(t), FLABx2n, ABABx2n
(t), FMx2n+1, STx2n+1

(kt))  0 

Letting n , we get 

 (FABz, z(kt), FABz, z(t), FABz, ABz(t), Fz, z(kt))  0 

 (FABz, z(kt), FABz, z(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (FABz, z(kt), FABz, z(t), 1, 1)  0. 

Using (b), we get 

 FABz, z(t) = 1, for all t > 0, 

i.e. ABz = z. 

Step 3.  Putting  x = z  and y = x2n+1  in (3.1.5), we get 

 (FLz, Mx2n+1
(kt), FABz, STx2n+1

(t), FLz, ABz(t), FMx2n+1, STx2n+1
(kt))  0. 

Letting n , we get 
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 (FLz, z(kt), FABz, z(t), FLz, ABz(t), Fz, z(kt))  0 

 (FLz, z(kt), 1, FLz, z(t), 1)  0. 

As is non-decreasing in the first argument, we have   

 (FLz, z(kt), 1, FLz, z(t), 1)  0. 

Using (a), we get 

 Fz, Lz(kt) = 1, for all t > 0,  

i.e.  z = Lz. 

Thus, we have z = Lz = ABz.   

Step 4.  Putting  x = Bz   and  y = x2n+1  in (3.1.5), we get 

 (FLBz, Mx2n+1
(kt), FABBz, STx2n+1

(t), FLBz, ABBz(t), FMx2n+1, STx2n
(kt))  0. 

Letting n , we get 

 (FBz, z(kt), FBz, z(t), FBz, Bz(t), Fz, z(kt))  0 

 (FBz, z(kt), FBz, z(t), 1,  1)  0. 

As is non-decreasing in the first argument, we have 

 (FBz, z(t), FBz, z(t), 1,  1)  0. 

Using (b), we have 

 FBz, z(t) = 1,  for all t > 0, 

i.e. z = Bz. 

Since z = ABz, we also have 

 z = Az. 

Therefore, z = Az = Bz = Lz. 

Step 5.   As L(X) ST(X),  there exists v   X such that  

   z = Lz = STv.     

 Putting x = x2n    and  y = v  in (3.1.5),  we get 

 (FLx2n, Mv(kt), FABx2n, STv(t), FLx2n, ABx2n
(t), FMv, STv(kt))  0. 

Letting n , we get 

 (Fz, Mv(kt), Fz, STv(t), Fz, z(t), FMv, z(kt))  0 

 (Fz, Mv(kt), 1, 1, Fz, Mv(kt))  0 

Using (a), we have  

 Fz, Mv(kt)  1, for all t > 0. 

Hence,   Fz, Mv(t) =1.  

Thus, z = Mv.   

Therefore,  z = Mv = STv.   

As (M, ST) is occasionally weakly compatible, we have 

  STMv = MSTv.        Thus,  STz = Mz. 
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Step 6.    Putting x = x2n and y = z  in (3.1.5),  we get 

 (FLx2n, Mz(kt), FABx2n, STz(t), FLx2n, ABx2n
(t), FMz, STz(kt))  0 

Letting n ,  we get 

 (Fz, Mz(kt), Fz, Mz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Mz(t), Fz, Mz(t), 1, 1)  0. 

Using (b), we have 

 Fz, Mz(t) 1, for all t > 0. 

Thus,   Fz, Mz(t) = 1,  we have  

 z = Mz = STz. 

Step 7.    Putting x = x2n   and  y = Tz  in (3.1.5) and using Step 5,  we get 

 (FLx2n, MTz(kt), FABx2n, STTz(t), FLx2n, ABx2n
(t), FMTz, STTz(kt))  0. 

Letting n , we get 

 (FLz, Tz(kt), Fz, Tz(t), Fz, z(t), FTz, Tz(kt))  0 

 (Fz, Tz(kt), Fz, Tz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Tz(t), Fz, Tz(t), 1, 1)  0. 

Using (b), we have 

 Fz, Tz(t)  1, for all t > 0. 

Thus,  Fz, Tz(t) = 1, we have 

 z = Tz. 

Since Tz = STz, we also have  z = Sz . 

Hence    

  Az = Bz = Lz = Mz = Tz  = Sz  = z. 

 Hence, the six self maps have a common fixed point in this case.  

Case II. When L is Continuous 

 As L is continuous, L2x2n   Lz    and    L(AB)x2n   Lz. 

 As (L, AB) is compatible map of type (), so    

  LLx2n  (AB) (AB)x2n  and LABx2n ABz 

 By uniqueness of limit in Menger space, we have  

  Lz = ABz. 

Step 8.   Putting x = z and y = x2n+1  in (3.1.5),  we get 

 (FLz, Mx2n+1
(kt), FABz, STx2n+1

(t), FLz, ABz(t), FMx2n+1, STx2n+1
(kt))  0. 

Letting n ,  we get 

 (FLz, z(kt), FLz, z(t), FLz, Lz(t), Fz, z(kt))  0 
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 (FLz, z(kt), FLz, z(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (FLz, z(t), FLz, z(t), 1, 1)  0. 

Using (b), we have 

 Fz, Lz(t)  1, for all t > 0. 

Thus, Fz, Lz(t) =1 

 z = Lz. 

Therefore,  

 z = Lz = ABz. 

Step 9.  Putting x = Bz and y = x2n+1  in (3.1.5),  we get 

 (FLBz, Mx2n+1
(kt), FABBz, STx2n+1

(t), FLBz, ABBz(t), FMx2n+1, STx2n+1
(kt))  0. 

Letting n ,  we get 

 (FBz, z(kt), FBz, z(t), FBz, Bz(t), Fz, z(kt))  0 

 (FBz, z(kt), FBz, z(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (FBz, z(t), FBz, z(t), 1, 1)  0. 

Using (b), we have 

 FBz, z(t)  1, for all t > 0. 

Thus, FBz, z(t) =1 

 z = Bz. 

Since z  = ABz, we also have  z = Az. 

Therefore,  z = Az = Bz = Lz. 

Step 10.   As L(X) ST(X),  there exists v   X such that  

   z = Lz = STv.     

 Putting x = x2n    and  y = v  in (3.1.5),  we get 

 (FLx2n, Mv(kt), FABx2n, STv(t), FLx2n, ABx2n
(t), FMv, STv(kt))  0. 

Letting n , we get 

 (Fz, Mv(kt), Fz, STv(t), Fz, z(t), FMv, z(kt))  0 

 (Fz, Mv(kt), 1, 1, Fz, Mv(kt))  0 

Using (a), we have  

 Fz, Mv(kt)  1, for all t > 0. 

Hence,   Fz, Mv(t) =1.  

Thus, z = Mv.   

Therefore,  z = Mv = STv.   

As (M, ST) is occasionally weakly compatible, we have 
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  STMv = MSTv.         

Thus,  STz = Mz. 

Step 11.    Putting x = x2n and y = z  in (3.1.5),  we get 

 (FLx2n, Mz(kt), FABx2n, STz(t), FLx2n, ABx2n
(t), FMz, STz(kt))  0 

Letting n ,  we get 

 (Fz, Mz(kt), Fz, Mz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Mz(t), Fz, Mz(t), 1, 1)  0. 

Using (b), we have 

 Fz, Mz(t)  1, for all t > 0. 

Thus,   Fz, Mz(t) = 1,  we have  

 z = Mz = STz. 

Step 12. Putting x = x2n   and  y = Tz  in (3.1.5) and using Step 5,  we get 

 (FLx2n, MTz(kt), FABx2n, STTz(t), FLx2n, ABx2n
(t), FMTz, STTz(kt))  0. 

Letting n , we get 

 (FLz, Tz(kt), Fz, Tz(t), Fz, z(t), FTz, Tz(kt))  0 

 (Fz, Tz(kt), Fz, Tz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Tz(kt), Fz, Tz(t), 1, 1)  0. 

Using (b), we have 

 Fz, Tz(t)  1, for all t > 0. 

Thus,  Fz, Tz(t) = 1, we have 

 z = Tz. 

Since Tz = STz, we also have  z = Sz . 

Hence   Az = Bz = Lz = Mz = Tz  = Sz  = z. 

Hence, the six self maps have a common fixed point in this case also. 

Uniqueness.  Let w be another common fixed point  of A, B, L, M, S and T;  then  w = Aw =  Bw = Lw = Mw 

= Sw = Tw. 

 Putting x = z   and    y = w   in   (3.1.5), we get 

 (FLz, Mw(kt), FABz, STw(t), FLz, ABz(t), FMw, STw(kt))  0 

 (Fz, w(kt), Fz, w(t), Fz, z(t), Fw, w(kt))  0 

 (Fz, w(kt), Fz, w(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, w(t), Fz, w(t), 1, 1)  0. 

Using (b), we have 
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 Fz, w(t)  1, for all t > 0. 

Thus,  Fz, w(t) = 1,  

i.e.,  z = w. 

Therefore, z is a unique common fixed point of A, B, L, M, S & T. 

This completes the proof. 

Remark 3.1. The above theorem is a generalization of the result of Pant et. al. [9] in the sense that the 

conditions of semi-compatibility and weak compatibility have been replaced by compatibility of type () and 

occasionally weakly compatible. 

 

REFERENCES 

 

[1]. Cho, Y.J., Murthy, P.P. and Stojakovik, M., Compatible mappings of type (A) and common fixed point in 

Menger space, Comm. Korean Math. Soc. 7 (2), (1992), 325-339. 

[2].  Jain, A. and Chaudhary, B., On common fixed point theorems for semi-compatible and occasionally 

weakly compatible mappings in Menger space, International Journal of Research and Reviews in Applied 

Sciences, Vol. 14 (3), (2013), 662-670. 

[3]. Jain, A. and Singh, B., Common fixed point theorem in Menger space through compatible maps of type 

(A), Chh. J. Sci. Tech. 2 (2005), 1-12. 

[4]. Jain, A. and Singh, B., A fixed point theorem in Menger space through compatible maps of type (A), 

V.J.M.S. 5(2), (2005), 555-568. 

[5].  Jungck, G., Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci. 9(4), 

(1986),  771-779. 

[6]  Jungck, G. and Rhoades, B.E.,  Fixed points for set valued functions without continuity,  Indian  J. Pure 

Appl. Math. 29(1998), 227-238. 

[7]  Menger, K., Statistical metrics, Proc. Nat. Acad. Sci. USA. 28(1942), 535 -537. 

[8]  Mishra, S.N., Common fixed points of compatible mappings in PM-spaces, Math. Japon. 36(2), (1991), 

283-289. 

[9] Pant, B.D. and Chauhan, S., Common fixed point theorems for semi-compatible mappings using implicit 

relation, Int. Journal of Math. Analysis, 3 (28), (2009), 1389-1398. 

[10] Patel, R.N. and Patel, D., Fixed points of compatible mappings of type (A) on Menger space, V.J.M.S. 

4(1), (2004), 185-189. 

[11]  Schweizer, B. and Sklar, A.,  Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334. 

[12]  Sehgal, V.M.  and Bharucha-Reid, A.T., Fixed points of contraction maps on probabilistic metric spaces, 

Math. System Theory 6(1972), 97- 102. 

[13]  Sessa, S., On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. 

Beograd 32(46), (1982), 146-153. 

[14] Singh, M., Sharma, R.K. and Jain, A., Compatible mappings of type (A) and common fixed points in 

Menger space, Vikram Math. J. 20 (2000), 68-78. 

[15] Singh, S.L. and Pant, B.D., Common fixed point theorems in probabilistic metric spaces and extension to 

uniform spaces, Honam. Math. J. 6 (1984), 1-12.  


