www.ijates.com

FIXED POINTS OF WEAK COMPATIBILITY IN MENGER SPACE

V. H. Badshah¹, Suman Jain², Arihant Jain³, Subhash Mandloi⁴

^{1,4}School of Studies in Mathematics, Vikram University, Ujjain (M.P.) (India)

²Department of Mathematics, Govt. College, Kalapipal (M.P.) (India)

³Department of Applied Mathematics, Shri Guru Sandipani Institute of Technology and Science,

Ujjain M.P. (India)

ABSTRACT

The present paper deals with a common fixed point theorem for six self maps which generalizes the result of Pant and Chauhan [10], using the concept of weak compatibility in Menger space.

Keywords and Phrases. Menger space, Common fixed points, Compatible maps, Weak Compatible maps.

AMS Subject Classification (2000). Primary 47H10, Secondary 54H25.

I. INTRODUCTION

Jungck and Rhoades [6] termed a pair of self maps to be coincidentally commuting or equivalently weakly compatible if they commute at their coincidence points. Sessa [14] initiated the tradition of improving commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces. Jungck [5] soon enlarged this concept to compatible maps. Menger [7] introduced the notion of probabilistic metric space which is a generalization of metric space. It is also of fundamental importance in probabilistic functional analysis. The development of fixed point theory in PM-spaces was due to Schweizer and Sklar [12]. Sehgal and Bharucha-Reid [13] obtained a generalization of Banach Contraction Principle on a complete Menger space which is a milestone in developing fixed-point theory in Menger space.

The notion of compatible mapping in a Menger space has been introduced by Mishra [8]. Cho, Murthy and Stojakovik [1] proposed the concept of compatible maps of type (A) in Menger space and gave some fixed point theorems. Recently, using the concept of compatible mappings of type (A), semi-compatibility and occasionally weak compatibility in Menger space, Jain et. al. [2, 3, 4] proved some interesting fixed point theorems in Menger space. In the sequel, Patel and Patel [10] proved a common fixed point theorem for four compatible maps of type (A) in Menger space by taking a new inequality.

In this paper a fixed point theorem for six self maps has been proved using the concept of weak compatible mappings. We also cited an example.

II. PRELIMINARIES

Definition 2.1.[8] A mapping $\mathcal{F}: R \to R^+$ is called a *distribution* if it is non-decreasing left continuous with inf $\{\mathcal{F}(t) \mid t \in R\} = 0$ and $\sup \{\mathcal{F}(t) \mid t \in R\} = 1$.

www.ijates.com

ISSN 2348 - 7550

We shall denote by L the set of all distribution functions while H will always denote the specific distribution function defined by

$$H(t) = \begin{cases} 0 & , & t \le 0 \\ 1 & , & t > 0 \end{cases}$$

Definition 2.2. [2] A mapping $t : [0, 1] \times [0, 1] \to [0, 1]$ is called a *t-norm* if it satisfies the following conditions:

- (t-1) t(a, 1) = a, t(0, 0) = 0;
- (t-2) t(a, b) = t(b, a);
- (t-3) $t(c, d) \ge t(a, b); \quad \text{for } c \ge a, d \ge b,$
- (t-4) t(t(a, b), c) = t(a, t(b, c)) for all $a, b, c, d \in [0, 1]$.

Definition 2.3. [2] A *probabilistic metric space* (*PM-space*) is an ordered pair (X, \mathcal{F}) consisting of a non empty set X and a function $\mathcal{F}: X \times X \to L$, where L is the collection of all distribution functions and the value of \mathcal{F} at $(u, v) \in X \times X$ is represented by $F_{u, v}$. The function $F_{u, v}$ assumed to satisfy the following conditions:

- (PM-1) $F_{u,v}(x) = 1$, for all x > 0, if and only if u = v;
- (PM-2) $F_{11 V}(0) = 0;$
- (PM-3) $F_{u,v} = F_{v,u}$;
- (PM-4) If $F_{u,v}(x) = 1$ and $F_{v,w}(y) = 1$ then $F_{u,w}(x + y) = 1$,

for all $u,v,w \in X$ and x, y > 0.

Definition 2.4. [2] A *Menger space* is a triplet (X, \mathcal{F}, t) where (X, \mathcal{F}) is a PM-space and t is a t-norm such that the inequality

$$(PM\text{-}5) \ F_{u,w}\left(x+y\right) \geq t \ \{F_{u,v}\left(x\right), F_{v,w}\left(y\right) \ \}, \ \text{for all } u,v,w \in X, x,y \geq 0.$$

Definition 2.5. [12] A sequence $\{x_n\}$ in a Menger space (X, \mathcal{F}, t) is said to be *convergent* and *converges to a point* x in X if and only if for each $\varepsilon > 0$ and $\lambda > 0$, there is an integer $M(\varepsilon, \lambda)$ such that

$$\boldsymbol{F}_{\boldsymbol{x}_{\boldsymbol{n}},~\boldsymbol{x}}\left(\boldsymbol{\epsilon}\right)>1$$
 - $\boldsymbol{\lambda}$ for all $\boldsymbol{n}\geq M(\boldsymbol{\epsilon},~\boldsymbol{\lambda}).$

Further the sequence $\{x_n\}$ is said to be *Cauchy sequence* if for $\epsilon > 0$ and $\lambda > 0$, there is an integer $M(\epsilon, \lambda)$ such that

$$F_{x_n,\ x_m}(\epsilon) > \text{1-}\ \lambda \qquad \qquad \text{for all } m,\, n \geq M(\epsilon,\, \lambda).$$

A Menger PM-space (X, \mathcal{F}, t) is said to be *complete* if every Cauchy sequence in X converges to a point in X.

A complete metric space can be treated as a complete Menger space in the following way:

Proposition 2.1. [3] If (X, d) is a metric space then the metric d induces mappings $\mathcal{F}: X \times X \to L$, defined by $F_{p,q}(x) = H(x - d(p,q))$, $p, q \in X$, where

$$H(k) = 0$$
, for $k \le 0$ and $H(k) = 1$, for $k > 0$.

Further if, $t:[0,1]\times[0,1]\to[0,1]$ is defined by $t(a,b)=\min\{a,b\}$. Then (X, \mathcal{F}, t) is a Menger space. It is complete if (X,d) is complete.

The space (X, \mathcal{F}, t) so obtained is called the *induced Menger space*.

www.ijates.com

ISSN 2348 - 7550

Proposition 2.2. [8] In a Menger space (X, \mathcal{F}, t) if $t(x, x) \ge x$, for all $x \in [0, 1]$ then $t(a, b) = \min\{a, b\}$, for all $a, b \in [0, 1]$.

Definition 2.6. [7] Self mappings A and S of a Menger space (X, \mathcal{F}, t) are said to be weak compatible if they commute at their coincidence points i.e. Ax = Sx for $x \in X$ implies ASx = SAx.

Definition 2.7. [9] Self mappings A and S of a Menger space (X, \mathcal{F}, t) are said to be *compatible* if $F_{ASx_n, SAx_n}(x) \to 1$ for all x > 0, whenever $\{x_n\}$ is a sequence in X such that $Ax_n, Sx_n \to u$ for some u in X, as $n \to \infty$.

Definition 2.8. [10] Self maps S and T of a Menger space (X, \mathcal{F}, t) are said to be *semi-compatible* if $F_{STx_n, Tu}(x) \to 1$ for all x > 0, whenever $\{x_n\}$ is a sequence in X such that $Sx_n, Tx_n \to u$ for some u in X, as $n \to \infty$.

Now, we give an example of pair of self maps (A, S) which are weak compatible but not semi-compatible.

Example 2.1. Let (X, d) be a metric space where X = [0, 4] and (X, \mathcal{F}, t) be the induced Menger space with $F_{\mathbf{p},\mathbf{q}}(\epsilon) = H(\epsilon - d(\mathbf{p}, \mathbf{q})), \ \forall \ \mathbf{p}, \mathbf{q} \in X \ \text{and} \ \epsilon > 0.$

Define self maps A and S as follows:

$$A(x) = \begin{cases} 4 - x, & \text{if } 0 \le x < 2 \\ 4, & \text{if } 2 \le x \le 4, \end{cases} \quad S(x) = \begin{cases} x, & \text{if } 0 \le x < 2 \\ 4, & \text{if } 2 \le x \le 4. \end{cases}$$

Taking
$$x_n = 2 - \frac{1}{n}$$
, we get $F_{Ax_n,2}(\varepsilon) = H\left(\varepsilon - \frac{2}{n}\right)$.

Hence, $\lim_{n\to\infty} F_{Ax_n,2}(\varepsilon) = 1$.

Thus, $Ax_n \to 2$. Similarly, $Sx_n \to 2$ as $n \to \infty$.

Again,

$$F_{ASx_n,S(2)}(\varepsilon) = H\left(\varepsilon - \left(2 - \frac{1}{n}\right)\right).$$

$$\lim_{n\to\infty} F_{ASx_n,S(2)}(\varepsilon) = H(\varepsilon-2) \neq 1, \ \forall \ \varepsilon > 0.$$

Hence, (A, S) is not semi-compatible. Also, set of coincidence points of A and S is [2, 4]. Now, for any $x \in [2, 4]$, Ax = Sx = 4 and AS(x) = A(4) = 4 = S(4) = SA(x).

Hence, the pair (A, S) is weak compatible.

Remark 2.2. In view of above example, it follows that the concept of weak compatible maps is more general than that of semi-compatible maps.

Proposition 2.3. Let $\{x_n\}$ be a Cauchy sequence in a Menger space (X, \mathcal{F}, t) with continuous t-norm t. If the subsequence $\{x_{2n}\}$ converges to x in X, then $\{x_n\}$ also converges to x.

Proof. As $\{x_{2n}\}$ converges to x, we have

$$F_{x_n,x}(\varepsilon) \ge t \left(F_{x_n,x_{2n}} \left(\frac{\varepsilon}{2} \right), F_{x_{2n},x} \left(\frac{\varepsilon}{2} \right) \right).$$

Then

 $\lim_{n\to\infty} F_{x_n,x}(\varepsilon) \ge t(1,1), \text{ which gives } \lim_{n\to\infty} F_{x_n,x}(\varepsilon) = 1, \ \forall \ \varepsilon > 0 \text{ and the result follows.}$

www.ijates.com

ISSN 2348 - 7550

Lemma 2.1. [16] Let $\{x_n\}$ be a sequence in a Menger space (X, \mathcal{F}, t) with continuous t-norm t and $t(a, a) \ge a$. If there exists a constant $k \in (0, 1)$ such that $F_{X_n, X_{n+1}}(kt) \ge F_{X_{n-1}, X_n}(t)$ for all $t \ge 0$ and n = 1, 2, 3, ..., then $\{x_n\}$ is a Cauchy sequence in X.

Lemma 2.2. [15] Let (X, \mathcal{F}, t) be a Menger space. If there exists a constant $k \in (0, 1)$ such that

$$F_{x, y}(kt) \ge F_{x, y}(t)$$
 for all $x, y \in X$ and $t > 0$, then $x = y$.

A class of implicit relation. Let Φ be the set of all real continuous functions $\phi: (R^+)^4 \to R$, non-decreasing in the first argument with the property:

a. For $u, v \ge 0$, $\phi(u, v, v, u) \ge 0$ or $\phi(u, v, u, v) \ge 0$ implies that $u \ge v$.

b. $\phi(u, u, 1, 1) \ge 0$ implies that $u \ge 1$.

Example 2.2. Define $\phi(t_1, t_2, t_3, t_4) = 18t_1 - 16t_2 + 8t_3 - 10t_4$. Then $\phi \in \Phi$.

III. MAIN RESULT

Theorem 3.1. Let A, B, L, M, S and T be self mappings on a Menger space (X, \mathcal{F}, t) with continuous t-norm t satisfying:

- (3.1.1) $L(X) \subseteq ST(X), M(X) \subseteq AB(X);$
- (3.1.2) AB = BA, ST = TS, LB = BL, MT = TM;
- (3.1.3) One of ST(X), M(X), AB(X) or L(X) is complete;
- (3.1.4) The pairs (L, AB) and (M, ST) are weak compatible;
- (3.1.5) for some $\phi \in \Phi$, there exists $k \in (0, 1)$ such that for all $x, y \in X$ and t>0,

$$\phi(F_{Lx,Mv}(kt), F_{ABx,STv}(t), F_{Lx,ABx}(t), F_{Mv,STv}(kt)) \ge 0$$

then A, B, L, M, S and T have a unique common fixed point in X.

Proof. Let $x_0 \in X$. From condition (3.1.1) $\exists x_1, x_2 \in X$ such that

$$Lx_0 = STx_1 = y_0$$
 and $Mx_1 = ABx_2 = y_1$.

Inductively, we can construct sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$Lx_{2n} = STx_{2n+1} = y_{2n}$$
 and $Mx_{2n+1} = ABx_{2n+2} = y_{2n+1}$

for $n = 0, 1, 2, \dots$

Step 1. Putting $x = x_{2n}$ and $y = x_{2n+1}$ in (3.1.5), we get

$$\phi(F_{Lx_{2n},\ Mx_{2n+1}}(kt),\ F_{ABx_{2n},\ STx_{2n+1}}(t),\ F_{Lx_{2n},\ ABx_{2n}}(t),\ F_{Mx_{2n+1},\ STx_{2n+1}}(kt))\geq\ 0.$$

Letting $n \to \infty$, we get

$$\varphi(F_{y_{2n},\;y_{2n+1}}(kt),\,F_{y_{2n-1},\;y_{2n}}(t),\,F_{y_{2n},\;y_{2n-1}}(t),\,F_{y_{2n+1},\;y_{2n}}(kt))\geq\;0.$$

Using (a), we get

$$F_{y_{2n}, y_{2n+1}}(kt) \ge F_{y_{2n-1}, y_{2n}}(t).$$

Therefore, for all n even or odd, we have

$$F_{y_n,\;y_{n+1}}(kt) \geq \; F_{y_{n-1},\;y_n}(t).$$

Therefore, by lemma 2.1, $\{y_n\}$ is a Cauchy sequence in X.

www.ijates.com

ISSN 2348 - 7550

Case I. ST(X) is complete. In this case $\{y_{2n}\} = \{STx_{2n+1}\}\$ is a Cauchy sequence in ST(X), which is complete.

Thus $\{y_{2n+1}\}$ converges to some $z \in ST(X)$. By proposition 2.3, we have

$$\{Mx_{2n+1}\} \to z \text{ and } \{STx_{2n+1}\} \to z,$$
 (3.8)

$$\{Lx_{2n}\} \rightarrow z \quad \text{and} \quad \{ABx_{2n}\} \rightarrow z.$$
 (3.9)

As $z \in ST(X)$ there exists $v \in X$ such that z = STv.

Step I. Putting $x = x_{2n}$ and y = v in (3.1.5), we get

$$\phi(F_{Lx_{2n}}, M_V(kt), F_{ABx_{2n}}, ST_V(t), F_{Lx_{2n}}, ABx_{2n}(t), F_{MV}, ST_V(kt)) \ge 0.$$

Letting $n \to \infty$, we get

$$\phi(F_{z, Mv}(kt), F_{z, STv}(t), F_{z, z}(t), F_{Mv, z}(kt)) \ge 0$$

$$\phi(F_{z, Mv}(kt), 1, 1, F_{z, Mv}(kt)) \ge 0$$

Using (a), we have

$$F_{z, Mv}(kt) \ge 1$$
, for all $t > 0$.

Hence, $F_{z,Mv}(t) = 1$.

Thus, z = Mv.

Therefore, z = Mv = STv.

As (M, ST) is weakly compatible, we have

$$STMv = MSTv.$$
 Thus, $STz = Mz.$

Step II. Putting $x = x_{2n}$ and y = z in (3.1.5), we get

$$\phi(F_{Lx_{2n},\ Mz}(kt),\ F_{ABx_{2n},\ STz}(t),\ F_{Lx_{2n},\ ABx_{2n}}(t),\ F_{Mz,\ STz}(kt)) \geq\ 0$$

Letting $n \to \infty$, we get

$$\phi(F_{z, Mz}(kt), F_{z, Mz}(t), 1, 1) \ge 0.$$

As ϕ is non-decreasing in the first argument, we have

$$\phi(F_{z, Mz}(t), F_{z, Mz}(t), 1, 1) \ge 0.$$

Using (b), we have

$$F_{z, Mz}(t) \ge 1$$
, for all $t > 0$.

Thus, $F_{Z, MZ}(t) = 1$, we have

$$z = Mz = STz$$
.

Step III. Putting $x = x_{2n}$ and y = Tz in (3.1.5), we get

$$\phi(F_{Lx_{2n}}, MTz^{(kt)}, F_{ABx_{2n}}, STTz^{(t)}, F_{Lx_{2n}}, ABx_{2n}^{(t)}, F_{MTz}, STTz^{(kt)}) \geq \ 0.$$

Letting $n \to \infty$, we get

$$\phi(F_{L,Z_1,T_Z}(kt), F_{Z_1,T_Z}(t), F_{Z_2,Z}(t), F_{T,Z_1,T_Z}(kt)) \ge 0$$

$$\phi(F_{Z_1, T_Z}(kt), F_{Z_1, T_Z}(t), 1, 1) \ge 0.$$

As ϕ is non-decreasing in the first argument, we have

$$\phi(F_{Z, T_Z}(t), F_{Z, T_Z}(t), 1, 1) \ge 0.$$

Using (b), we have

International Journal of Advanced Technology in Engineering and Science

www.ijates.com

$$F_{z, Tz}(t) \ge 1$$
, for all $t > 0$.

Thus,
$$F_{z, Tz}(t) = 1$$
, we have

$$z = Tz$$
.

Since Tz = STz, we also have z = Sz.

Hence Sz = Tz = Mz = z.

Step IV. As $M(X) \subseteq AB(X)$, there exists $w \in X$ such that

$$z = Mz = ABw$$
.

Putting
$$x = w$$
 and $y = x_{2n+1}$ in (3.1.5), we get

$$\phi(F_{Lw,\;Mx_{2n+1}}(kt),\;F_{ABw,\;STx_{2n+1}}(t),\;F_{Lw,\;ABw}(t),\;F_{Mx_{2n+1},\;STx_{2n+1}}(kt))\geq\;0.$$

Letting $n \to \infty$, we get

$$\phi(F_{Lw, z}(kt), F_{Lw, z}(t), F_{Lw, Lz}(t), F_{z, z}(kt)) \ge 0$$

$$\phi(F_{Lz,\ z}(kt),\,F_{Lz,\ z}(t),\,1,\,1)\geq\ 0.$$

As ϕ is non-decreasing in the first argument, we have

$$\phi(F_{Lw,\;z}(t),\,F_{Lw,\;z}(t),\,1,\,1)\geq\;0.$$

Using (b), we have

$$F_{z,Lw}(t) \ge 1$$
, for all $t > 0$.

Thus,
$$F_{z, Lw}(t) = 1$$

$$\Rightarrow$$
 z = Lw.

Therefore,

$$Lz = ABz$$
.

Step V. Putting
$$x = z$$
 and $y = x_{2n+1}$ in (3.1.5), we get

$$\varphi(F_{Lz,\;Mx_{2n+1}}(kt),\,F_{ABz,\;STx_{2n+1}}(t),\,F_{Lz,\;ABz}(t),\,F_{Mx_{2n+1}},\,_{STx_{2n+1}}(kt))\geq\;0.$$

Letting $n \to \infty$, we get

$$\phi(F_{Lz,\;z}(kt),\,F_{ABz,\;z}(t),\,F_{Lz,\;ABz}(t),\,F_{z,\;z}(kt)) \geq \; 0$$

$$\phi(F_{L,Z_{t},Z}(kt),\,1,\,F_{L,Z_{t},Z}(t),\,1)\geq\,0.$$

As ϕ is non-decreasing in the first argument, we have

$$\phi(F_{L,Z_{*},Z}(kt), 1, F_{L,Z_{*},Z}(t), 1) \ge 0.$$

Using (a), we get

$$F_{z, Lz}(kt) = 1$$
, for all $t > 0$,

i.e.
$$z = Lz$$
.

Thus, we have z = Lz = ABz.

Step VI. Putting
$$x = Bz$$
 and $y = x_{2n+1}$ in (3.1.5), we get

$$\varphi(F_{LBz,\;Mx_{2n+1}}(kt),\;F_{ABBz,\;STx_{2n+1}}(t),\;F_{LBz,\;ABBz}(t),\;F_{Mx_{2n+1},\;STx_{2n}}(kt))\geq\;0.$$

Letting $n \to \infty$, we get

$$\phi(F_{Bz, z}(kt), F_{Bz, z}(t), F_{Bz, Bz}(t), F_{z, z}(kt)) \ge 0$$

ijates

ISSN 2348 - 7550

International Journal of Advanced Technology in Engineering and Science

ijates ISSN 2348 - 7550

$$\phi(F_{Bz, z}(kt), F_{Bz, z}(t), 1, 1) \ge 0.$$

As ϕ is non-decreasing in the first argument, we have

$$\phi(F_{Bz, z}(t), F_{Bz, z}(t), 1, 1) \ge 0.$$

Using (b), we have

$$F_{Bz, z}(t) = 1$$
, for all $t > 0$,

i.e.
$$z = Bz$$
.

Since z = ABz, we also have

$$z = Az$$
.

Therefore, z = Az = Bz = Lz.

Combining the results from different steps, we get

$$Az=Bz=Lz=Mz=Tz=Sz\ =\ z.$$

Hence, the six self maps have a common fixed point in this case.

Case when L(X) is complete follows from above case as $L(X) \subset ST(X)$.

Case II. AB(X) is complete. This case follows by symmetry. As $M(X) \subseteq AB(X)$, therefore the result also holds when M(X) is complete.

Uniqueness. Let w be another common fixed point of A, B, L, M, S and T; then w = Aw = Bw = Lw = Mw = Sw = Tw.

Putting x = z and y = w in (3.1.5), we get

$$\phi(F_{Lz,Mw}(kt), F_{ABz,STw}(t), F_{Lz,ABz}(t), F_{Mw,STw}(kt)) \ge 0$$

$$\phi(F_{Z_{t-W}}(kt), F_{Z_{t-W}}(t), F_{Z_{t-Z}}(t), F_{W_{t-W}}(kt)) \ge 0$$

$$\phi(F_{z=w}(kt), F_{z=w}(t), 1, 1) \ge 0.$$

As ϕ is non-decreasing in the first argument, we have

$$\phi(F_{Z, W}(t), F_{Z, W}(t), 1, 1) \ge 0.$$

Using (b), we have

$$F_{z, w}(t) \ge 1$$
, for all $t > 0$.

Thus,
$$F_{Z, W}(t) = 1$$
,

i.e.,
$$z = w$$
.

Therefore, z is a unique common fixed point of A, B, L, M, S and T.

This completes the proof.

Remark 3.1. If we take B = T = I, the identity map on X in theorem 3.1, then the condition (3.1.2) is satisfied trivially and we get

Corollary 3.1. Let A, L, M and S be self mappings on a Menger space (X, \mathcal{F}, t) with continuous t-norm t satisfying:

- (3.1.6) $L(X) \subseteq S(X)$, $M(X) \subseteq A(X)$;
- (3.1.7) One of S(X), M(X), A(X) or L(X) is complete;
- (3.1.8) The pairs (L, A) and (M, S) are weak compatible;
- (3.1.9) for some $\phi \in \Phi$, there exists $k \in (0, 1)$ such that for all $x, y \in X$ and t>0,

www.ijates.com

$$\phi(F_{Lx, My}(kt), F_{Ax, Sy}(t), F_{Lx, Ax}(t), F_{My, Sy}(kt)) \ge 0$$

then A, L, M and S have a unique common fixed point in X.

Remark 3.2. In view of proposition 2.2, $t(a, b) = min\{a, b\}$. Thus, corollary 3.1 generalizes the result of Pant et. al. [10] by reducing the semi-compatibility of the pair to its weak-compatibility and dropping the condition of continuity in a Menger space with continuous t-norm.

REFERENCES

- [1] Cho, Y.J., Murthy, P.P. and Stojakovik, M., Compatible mappings of type (A) and common fixed point in Menger space, Comm. Korean Math. Soc. 7 (2), (1992), 325-339.
- [2] Jain, A. and Chaudhary, B., On common fixed point theorems for semi-compatible and occasionally weakly compatible mappings in Menger space, International Journal of Research and Reviews in Applied Sciences, Vol. 14 (3), (2013), 662-670.
- [3] Jain, A. and Singh, B., Common fixed point theorem in Menger space through compatible maps of type (A), Chh. J. Sci. Tech. 2 (2005), 1-12.
- [4] Jain, A. and Singh, B., A fixed point theorem in Menger space through compatible maps of type (A), V.J.M.S. 5(2), (2005), 555-568.
- [5] Jain, A. and Singh, B., Common fixed point theorems in Menger spaces, The Aligarh Bull. of Maths. Vol. 25 (1), (2006), 23-31.
- [6] Jungck, G., Compatible mappings and common fixed points, Internat. J. Math. and Math. Sci. 9(4), (1986), 771-779.
- [7] Jungck, G. and Rhoades, B.E., Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29(1998), 227-238.
- [8] Menger, K., Statistical metrics, Proc. Nat. Acad. Sci. USA. 28(1942), 535 -537.
- [9] Mishra, S.N., Common fixed points of compatible mappings in PM-spaces, Math. Japon. 36(2), (1991), 283-289.
- [10] Pant, B.D. and Chauhan, S., Common fixed point theorems for semi-compatible mappings using implicit relation, Int. Journal of Math. Analysis, 3 (28), (2009), 1389-1398.
- [11] Patel, R.N. and Patel, D., Fixed points of compatible mappings of type (A) on Menger space, V.J.M.S. 4(1), (2004), 185-189.
- [12] Schweizer, B. and Sklar, A., Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334.
- [13] Sehgal, V.M. and Bharucha-Reid, A.T., Fixed points of contraction maps on probabilistic metric spaces, Math. System Theory 6(1972), 97- 102.
- [14] Sessa, S., On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. Beograd 32(46), (1982), 146-153.
- [15] Singh, M., Sharma, R.K. and Jain, A., Compatible mappings of type (A) and common fixed points in Menger space, Vikram Math. J. 20 (2000), 68-78.
- [16] Singh, S.L. and Pant, B.D., Common fixed point theorems in probabilistic metric spaces and extension to uniform spaces, Honam. Math. J. 6 (1984), 1-12.

ISSN 2348 - 7550