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ABSTRACT  

The present paper deals with a common fixed point theorem for six self maps which 

generalizes the result of Pant and Chauhan [ 10] , using the concept of  weak compatibility in 

Menger space.  
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I. INTRODUCTION 

 

Jungck and Rhoades [6] termed a pair of self maps to be coincidentally commuting or equivalently weakly 

compatible if they commute at their coincidence points. Sessa [14] initiated the tradition of improving 

commutativity in fixed-point theorems by introducing the notion of weak commuting maps in metric spaces.  

Jungck [5] soon enlarged this concept to compatible maps.  Menger [7] introduced the notion of probabilistic 

metric space which is a generalization of metric space.  It is also of fundamental importance in probabilistic 

functional analysis. The development of fixed point theory in PM-spaces was due to Schweizer and Sklar [12]. 

Sehgal and Bharucha-Reid [13] obtained a generalization of Banach Contraction Principle on a complete 

Menger space which is a milestone in developing fixed-point theory in Menger space. 

The notion of compatible mapping in a Menger space has been introduced by Mishra [8].  Cho, Murthy and 

Stojakovik [1] proposed the concept of compatible maps of type (A) in Menger space and gave some fixed point 

theorems. Recently, using the concept of compatible mappings of type (A), semi-compatibility and occasionally 

weak compatibility in Menger space, Jain et. al. [2, 3, 4] proved some interesting fixed point theorems in 

Menger space. In the sequel, Patel and Patel [10] proved a common fixed point theorem for four compatible 

maps of type (A) in Menger space by taking a new inequality. 

In this paper a fixed point theorem for six self maps has been proved using the concept of weak compatible 

mappings. We also cited an example.  

 

II. PRELIMINARIES 

 

Definition 2.1.[8]  A mapping F : R R+ is called a  distribution if it is non-decreasing left continuous with  

 inf { F (t) | t  R } = 0    and    sup { F (t) | t   R} = 1. 



 

130 | P a g e  

We shall denote by L the set of all distribution functions while H will always denote the specific distribution 

function defined by  

  
0 , 0

( ) .
1 , 0


 



t
H t

t
 

Definition 2.2. [2] A mapping t :[0, 1] × [0, 1]  [0, 1] is called a t-norm  if  it  satisfies the following 

conditions : 

(t-1)   t(a, 1) = a,       t(0, 0) = 0 ; 

(t-2)   t(a, b) =  t(b, a) ; 

(t-3)   t(c, d)   t(a, b) ;     for c  a, d  b, 

(t-4)   t(t(a, b), c) =  t(a, t(b, c))  for all a, b, c, d [0, 1]. 

Definition 2.3. [2] A probabilistic metric space (PM-space) is an ordered pair (X, F) consisting of a non empty 

set X and a function F : X × X  L, where L is the collection of all distribution functions and the value of F at 

(u, v)  X × X is represented by  Fu, v. The function Fu,v assumed to satisfy the following conditions: 

(PM-1 ) Fu,v(x) = 1, for all x > 0, if and only if  u = v; 

(PM-2) Fu,v (0) = 0; 

(PM-3) Fu,v = Fv,u; 

(PM-4) If Fu,v (x) = 1 and Fv,w (y) = 1 then Fu,w (x + y) = 1, 

       for all u,v,w  X and x, y > 0.  

Definition 2.4. [2] A Menger space is a triplet (X, F, t) where (X, F) is a  PM-space and t is a t-norm such that 

the inequality 

(PM-5) Fu,w (x + y)  t {Fu, v (x), Fv, w(y) }, for all u, v, w X, x, y  0. 

Definition 2.5. [12] A sequence {xn} in a Menger space (X, F, t) is said to be convergent and converges to a 

point x in X if and only if for each  > 0 and  > 0, there is an integer M(, ) such that   

   Fxn, x () > 1 -   for all n  M(, ).   

Further the sequence {xn} is said to be Cauchy sequence if for  

 > 0 and   > 0, there is an integer M(, ) such that  

   Fxn, xm
() > 1-   for all m, n  M(, ).  

A Menger PM-space (X, F, t) is said to be complete if every Cauchy sequence in X converges to a point in X. 

 A complete metric space can be treated as a complete Menger space in the following way : 

Proposition 2.1. [3] If (X, d) is a metric space then the metric d induces mappings  

F : X × X  L,  defined by Fp,q(x) = H(x - d(p, q)), p, q X, where  

  H(k) = 0,    for k  0   and   H(k) = 1,   for k >0. 

  Further if,  t : [0,1] × [0,1] [0,1] is defined by t(a,b) = min {a, b}.  Then (X, F, t) is a Menger space.  It is 

complete if (X, d) is complete. 

The space (X, F, t) so obtained is called the  induced Menger space. 
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Proposition 2.2. [8] In a Menger space (X, F, t) if t(x, x) x, for all x  [0, 1] then  t(a, b) = min{a, b}, for all  

a, b  [0, 1]. 

Definition 2.6. [7] Self mappings A and S of a Menger space (X, F, t) are said to be weak compatible if they 

commute at their coincidence points i.e. Ax = Sx   for x X  implies  ASx = SAx. 

Definition 2.7. [9] Self mappings A and S of a Menger space (X, F, t) are said to be compatible if   

FASxn, SAxn
(x)  1 for all x > 0, whenever {xn} is a sequence in X such that Axn, Sxn  u for some u in X, 

as n . 

Definition 2.8. [10] Self maps S and T of a Menger space (X, F, t) are said to be semi-compatible if  

FSTxn, Tu (x)  1 for all x  > 0,  whenever {xn} is a sequence in X such that Sxn, Txn  u for some u in X, as 

n . 

Now, we give an example of pair of self maps (A, S) which are weak compatible but not semi-compatible. 

Example 2.1. Let (X, d) be a metric space where X = [0, 4] and (X, F, t) be the induced Menger space with 

Fp,q() = H( - d(p, q)), p, q X and  > 0. 

Define self maps A and S as follows : 
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Thus, Axn 2. Similarly, Sxn 2 as n .  

Again,  
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Hence, (A, S) is not semi-compatible.  Also, set of coincidence points of A and S is           [2, 4].   Now, for any 

x [2, 4], Ax = Sx = 4  and AS(x) = A(4) = 4 = S(4) = SA(x). 

Hence, the pair (A, S) is weak compatible. 

Remark 2.2. In view of above example, it follows that the concept of weak compatible maps is more general 

than that of semi-compatible maps.   

Proposition 2.3. Let {xn} be a Cauchy sequence in a Menger space (X, F, t) with continuous t-norm t. If the 

subsequence {x2n} converges to x in X, then {xn} also converges to x. 

Proof. As {x2n} converges to x, we have 
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F   > 0 and the result follows. 
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Lemma 2.1. [16] Let {xn} be a sequence in a Menger space (X, F, t) with continuous t-norm t and t(a, a) a. If 

there exists a constant k(0, 1) such that Fxn,xn+1
(kt) Fxn-1, xn

(t) for all t 0 and n = 1, 2, 3, ..., then {xn} is 

a Cauchy sequence in X.  

Lemma 2.2. [15] Let (X, F , t) be a Menger space. If there exists a constant k (0, 1) such that  

 Fx, y(kt) Fx, y(t) for all x, y X and t > 0, then x = y.  

A class of implicit relation.  Let be the set of all real continuous functions  

: (R+)4 R, non-decreasing in the first argument with the property : 

a. For u, v 0,  (u, v, v, u) 0  or  (u,v,u,v)0 implies that u v. 

b. (u, u, 1, 1) 0 implies that u 1. 

Example 2.2. Define  (t1,t2,t3,t4) = 18t1 - 16t2 + 8t3 - 10t4.  Then . 

 

III. MAIN RESULT 

 

Theorem 3.1. Let A, B, L, M, S and T be self mappings on a Menger space  (X, F, t) with  continuous t-norm t 

satisfying : 

(3.1.1) L(X)   ST(X),  M(X)   AB(X); 

(3.1.2) AB = BA, ST = TS, LB = BL, MT = TM; 

(3.1.3) One of ST(X), M(X), AB(X) or L(X) is complete;  

(3.1.4)  The pairs (L, AB) and (M, ST) are weak compatible; 

(3.1.5) for some , there exists k (0, 1) such that for all x, y X and t>0,  

 (FLx, My(kt), FABx, STy(t), FLx, ABx(t), FMy, STy(kt))  0 

then  A, B, L, M, S and T have a unique common fixed point in X.   

Proof. Let x0  X.  From condition (3.1.1)    x1, x2  X  such that   

  Lx0 = STx1 = y0     and     Mx1 = ABx2 = y1.   

 Inductively, we can construct sequences {xn} and {yn} in X such that 

 Lx2n = STx2n+1 = y2n      and      Mx2n+1 = ABx2n+2 = y2n+1     

        for n = 0, 1, 2, ... .  

Step 1.  Putting  x = x2n and  y = x2n+1  in (3.1.5), we get 

 (FLx2n, Mx2n+1
(kt), FABx2n, STx2n+1

(t), FLx2n, ABx2n
(t), FMx2n+1, STx2n+1

(kt))  0. 

Letting n , we get 

 (Fy2n, y2n+1
(kt), Fy2n-1, y2n

(t), Fy2n, y2n-1
(t), Fy2n+1, y2n

(kt))  0. 

Using (a), we get 

 Fy2n, y2n+1
(kt)  Fy2n-1, y2n

(t). 

Therefore, for all n even or odd, we have 

 Fyn, yn+1
(kt)  Fyn-1, yn

(t). 

 Therefore, by lemma  2.1, {yn} is a Cauchy sequence in X. 
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Case I. ST(X) is complete.   In this case {y2n} = {STx2n+1} is a Cauchy sequence in ST(X), which is complete.  

Thus {y2n+1} converges to some z  ST(X). By proposition 2.3, we have 

 {Mx2n+1}   z  and {STx2n+1}     z,                                          (3.8) 

 {Lx2n}    z    and    {ABx2n}    z.               (3.9) 

As z  ST(X) there exists v  X such that z = STv. 

Step I. Putting x = x2n  and  y = v  in (3.1.5),  we get 

(FLx2n, Mv(kt), FABx2n, STv(t), FLx2n, ABx2n
(t), FMv, STv(kt))  0. 

Letting n , we get 

 (Fz, Mv(kt), Fz, STv(t), Fz, z(t), FMv, z(kt))  0 

 (Fz, Mv(kt), 1, 1, Fz, Mv(kt))  0 

Using (a), we have  

 Fz, Mv(kt)  1, for all t > 0. 

Hence,   Fz, Mv(t) =1.  

Thus, z = Mv.   

Therefore,  z = Mv = STv.   

As (M, ST) is weakly compatible, we have 

  STMv = MSTv.        Thus,  STz = Mz. 

Step II.  Putting x = x2n and y = z  in (3.1.5),  we get 

 (FLx2n, Mz(kt), FABx2n, STz(t), FLx2n, ABx2n
(t), FMz, STz(kt))  0 

Letting n ,  we get 

 (Fz, Mz(kt), Fz, Mz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Mz(t), Fz, Mz(t), 1, 1)  0. 

Using (b), we have 

 Fz, Mz(t) 1, for all t > 0. 

Thus,   Fz, Mz(t) = 1,  we have  

 z = Mz = STz. 

Step III. Putting x = x2n   and  y = Tz   in (3.1.5),  we get 

(FLx2n, MTz(kt), FABx2n, STTz(t), FLx2n, ABx2n
(t), FMTz, STTz(kt))  0. 

Letting n , we get 

 (FLz, Tz(kt), Fz, Tz(t), Fz, z(t), FTz, Tz(kt))  0 

 (Fz, Tz(kt), Fz, Tz(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, Tz(t), Fz, Tz(t), 1, 1)  0. 

Using (b), we have 



 

134 | P a g e  

 Fz, Tz(t)  1, for all t > 0. 

Thus,  Fz, Tz(t) = 1, we have 

 z = Tz. 

Since Tz = STz, we also have  z = Sz. 

Hence   Sz = Tz = Mz = z. 

Step IV. As  M(X)  AB(X),  there exists w   X such that   

   z =  Mz = ABw.     

 Putting  x = w   and   y = x2n+1  in (3.1.5), we get 

(FLw, Mx2n+1
(kt), FABw, STx2n+1

(t), FLw, ABw(t), FMx2n+1, STx2n+1
(kt))  0. 

Letting n ,  we get 

 (FLw, z(kt), FLw, z(t), FLw, Lz(t), Fz, z(kt))  0 

 (FLz, z(kt), FLz, z(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (FLw, z(t), FLw, z(t), 1, 1)  0. 

Using (b), we have 

 Fz, Lw(t)  1, for all t > 0. 

Thus, Fz, Lw(t) =1 

 z = Lw. 

Therefore,  

  Lz = ABz. 

Step V.  Putting  x = z   and   y = x2n+1  in (3.1.5), we get 

(FLz, Mx2n+1
(kt), FABz, STx2n+1

(t), FLz, ABz(t), FMx2n+1, STx2n+1
(kt))  0. 

Letting n , we get 

 (FLz, z(kt), FABz, z(t), FLz, ABz(t), Fz, z(kt))  0 

 (FLz, z(kt), 1, FLz, z(t), 1)  0. 

As is non-decreasing in the first argument, we have   

 (FLz, z(kt), 1, FLz, z(t), 1)  0. 

Using (a), we get 

 Fz, Lz(kt) = 1, for all t > 0,  

i.e.  z = Lz. 

Thus, we have z = Lz = ABz.   

Step VI.  Putting  x = Bz   and  y = x2n+1  in (3.1.5), we get 

(FLBz, Mx2n+1
(kt), FABBz, STx2n+1

(t), FLBz, ABBz(t), FMx2n+1, STx2n
(kt))  0. 

Letting n , we get 

 (FBz, z(kt), FBz, z(t), FBz, Bz(t), Fz, z(kt))  0 
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 (FBz, z(kt), FBz, z(t), 1,  1)  0. 

As is non-decreasing in the first argument, we have 

 (FBz, z(t), FBz, z(t), 1,  1)  0. 

Using (b), we have 

 FBz, z(t) = 1,  for all t > 0, 

i.e. z = Bz. 

Since z = ABz, we also have 

 z = Az. 

Therefore, z = Az = Bz = Lz. 

Combining the results from different steps, we get  

  Az = Bz = Lz = Mz = Tz = Sz  =  z. 

Hence, the six self maps have a common fixed point in this case.  

Case when L(X) is complete follows from above case as L(X) ST(X). 

Case II. AB(X) is complete. This case follows by symmetry. As M(X)   AB(X), therefore the result also holds 

when M(X) is complete. 

Uniqueness.  Let w be another common fixed point  of A, B, L, M, S and T;  then w = Aw =  Bw = Lw = Mw = 

Sw = Tw. 

 Putting x = z   and    y = w   in   (3.1.5), we get 

 (FLz, Mw(kt), FABz, STw(t), FLz, ABz(t), FMw, STw(kt))  0 

 (Fz, w(kt), Fz, w(t), Fz, z(t), Fw, w(kt))  0 

 (Fz, w(kt), Fz, w(t), 1, 1)  0. 

As is non-decreasing in the first argument, we have 

 (Fz, w(t), Fz, w(t), 1, 1)  0. 

Using (b), we have 

 Fz, w(t)  1, for all t > 0. 

Thus,  Fz, w(t) = 1,  

i.e.,  z = w. 

 Therefore, z is a unique common fixed point of A, B, L, M, S and T. 

 This completes the proof. 

Remark 3.1.  If we take B = T = I, the identity map on X in theorem 3.1, then the condition  (3.1.2) is satisfied 

trivially and we get 

Corollary 3.1. Let A, L, M and S be self mappings on a Menger space  (X, F, t) with  continuous t-norm t 

satisfying : 

(3.1.6) L(X)   S(X),    M(X)   A(X); 

(3.1.7) One of S(X), M(X), A(X) or L(X) is complete;  

(3.1.8)  The pairs (L, A) and (M, S) are weak compatible; 

(3.1.9) for some , there exists k (0, 1) such that for all x, y X and t>0,   
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(FLx, My(kt), FAx, Sy(t), FLx, Ax(t), FMy, Sy(kt))  0 

then  A, L, M and S have a unique common fixed point in X.   

Remark 3.2.  In view of proposition 2.2, t(a, b) = min{a, b}. Thus, corollary 3.1 generalizes the result of Pant 

et. al. [10] by reducing the semi-compatibility of the pair to its weak-compatibility and dropping the condition of 

continuity in a Menger space with continuous t-norm. 
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