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ABSTRACT

This paper concentrates on solving ordinary differential equations in MATLAB by using build-
n solvers such as odedb, ode23 and odelbs. Firstly, we give an introduction of MATLAB
Build-in solvers and existence and uniqueness solution of initial value problems (IVP). Next we
mtroduce the general syntax of ode solvers and there implementation solution(text problems).
Then, the reason of the stiff system of ordinary differential equation is discussed, we gave the
examples of stiff equation, comparisons are made and plotting their numerical solutions which
we obtain with the MATLAB using ode solvers (ode45, ode23 and odelbs). Next we provide
certain details on the algorithm behind the ode solvers ode4h, ode23 and odelbs. Explicit
formula for non-stiff systems, implicit formula for stiff systems and implementation of Runge-
kutta-Fehlberg method. Finally, we conclude that the solver is more accurate in solving ode.

I. INTRODUCTION

1.1Matlab ODE Suite

The MATLAB ODE suite is a collection of Matlab codes (M-file) developed by lowrence F.
Shampine and Mark W.Reichelt for solving initial value problems given by first-order ODE or
systems of ordinary differential equations and plotting their numerical solutions. and it contain
seven solvers ode45, ode23, odelbs, odel13,0de23s and ode23tbh. The three codes ode23, oded5,
and odell3 are designed to solve non-stiff problems and the two codes ode23s and odelbs are
designed to solve stiff problems. for example, that we want to solve the first order differential
equation y'= f(t,v) we can use MATLABSs built-in function(solvers).

we shall mainly discuss the general purpose solves ode45, ode23 and odelbs. Although we will
not discuss other solvers, it 1s important to realize that the calling syntax is the same for each
solver in ODE suite. The detail are given as follows.

1.2 Existence and Uniqueness of Solution VP

Before exploring any method of solving the problems, we need to check weather the solution
exist and if 1t exist, 1s the solution unique?. Then Consider the initial value problem for a
system of n ordinary differential equations of first order:

J(t) = ft,y®),  y(to) = vo, (2.1)
on the interval [a,b], Where 3/(¢) is unknown function that is being sought and yy is the value
of the function at the initial time t; The given function f(t,y) of two variables defines the dif-
ferential equation. Firstly let have some definitions.

f:RxR"— R",
1s continuous in t and Lispschitz continuous in y, which it 1s describe blow.

definition 1 A continuous function f(t,y) in a set D C R? is said to satisfied Lipschitz con-
dition on the variable y. If the constant L < 0 with

|f(t,m1) — f(t,w2)| < Llyr — vo
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where (t,y1), (t,y2) € D and L  is called Lipschitz Constant.

Il. BUILT-IN SOLVERS

We shall mainly discuss the general purpose solves ode45, ode23 and odelbs. Although we will
not discuss other solvers, 1t 1s important to realize that the calling syntax is the same for each

solver in ODE suite. The detail are given as follows.

e Syntax
[T,Y]| = solver(yprime,tspan,y0)
[T, Y] = solver(yprime,tspan,y0,options)
Where solver 1s one of ode45, ode23, odelbs, odell13,0de23s and ode23tb. You can call any
of these solvers by substituting the placeholder, solver, with any of the function names.

e yprime
A function handle that evaluates the right side of the differential equations.

e tspan
A vector specifying the interval of integration, [t0,#f]. The solver imposes the initial

conditions at tspan(1) and integrates from tspan(1) to tspan(end).

e yv0
A vector of initial conditions. Make sure that the order corresponds to the ordering used

to write y, z and their derivatives in terms of t. Also note that, if t consists of 5 variables,
then we need an input of 5 initial conditions.

e Options:- Optinal Argument integration argument using odeset function. commonly
used properties include a scalar relative error tolerance RelTol(le-3 by default) and a vec-
tor of absolute error tolerance AbsTol(all component are le-6 by default).

And use helpwin for odeset for detail.

The two parameters RelTol and AbsTol can be use to adjust a desired accuracy.

And MATLAB adaptability chooses the time step such that the error at n'* step satisfies
en < max (r |y, |,a)

Where a 1s the relative tolerance and a i1s the absolute tolerance. To change the relative
and and absolute tolerance, odeset function can be employed as follows.

Option = odeset(RelTol’ le - 12’, Abstol’, le - 8)

By adjusting these tolerance levels one can enforce the solver to take small time steps to
preserve the desired accuracy.

2.1 Error Tolerance Properties
The solvers use standard local error control techniques for monitoring and controlling the error
of each integration step. At each step, the local error e in the i component of the solution is
estimated and is required to be less than or equal to the acceptable error, which 1s a function
of two user-defined tolerances RelTol and AbsTol.

le(?)| <= max(RelTol * abs(y(i)), AbsTol(z))
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e RelTol:- Is the relative accuracy tolerance, a measure of the error relative to the size of
each solution component. Roughly, it controls the number of correct digits in the answer.
The default, le-3, corresponds to 0.1% accuracy.

e AbsTol:- Is a scalar or vector of the absolute error tolerances for each solution component.
AbsTol(1) is a threshold below which the values of the corresponding solution components
are unimportant. The absolute error tolerances determine the accuracy when the solution
approaches zero. The default value 1s le-6. Set tolerances using odeset, either at the
command line or in the ODE file.

11l. ALGORITHMS USE IN SOLVERS
MATLAB’s ODE solvers.

Solver Problem type Type of algorithm

odedb Nonstiff Explicit Runge Kutta pair, orders 4 and 5

ode23 Nonstiff Explicit Runge Kutta pair, orders 2 and 3

odell3 Nonstaff Explicit linear multistep, orders 1 to 13

odelbs Staff Implicit linear multistep, orders 1 to 5

ode23s Stiff Modified Rosenbrock pair (one-step), orders 2 and 3
ode23t Mildly stiff Trapezoidal rule (implicit), orders 2 and 3

ode23th Stiff Implicit Runge Kutta type algorithm, orders 2 and 3

3.1 The ode45 Method

ode45 it is based on an explicit Runge-Kutta(4,5) formula, the Dormand-prince pair. It is a
one-step solver in computing y(t,,), it needs only the solution at the immediately preceding time
point, y(t,_1). In general, ode45 is the best function to apply as a first try for most problems.
It use long step size, the default 1s to use the interpolated to compute solution values at four
points equally spaced within the span of each natural step.

3.2 The ode23 Method

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine. It
may be more efficient than ode45 at crude tolerances and in the presence of moderate stiffness.
Like oded5, ode23 1s a one-step solver. It advances from y,, to y,,1 with the third-order method
(so called local extrapolation) and controls the local error by taking the difference between the
third-order and the second-order numerical solutions(fourth order Runge-kutta).

3.3 The odel5s Method

Is a variable order solver based on (NDFs). Optionally, it uses the (BDFs, also known as Gear’s
method) that are usually less efficient. Like odell3, odelbs is a multistep solver. Try odelbs
when ode4b fails. The code odelbs for stiff systems 1s a quasi-constant step size implementation

of the NDFs of order 1 to 5.

odedb uses the Dormand-Prince pair. The difference between the two methods is then used as
an estimate of the local error in the lower-order method. If a local error estimate seems too
large, 1t 1s natural to try again with a shorter step based on an asymptotic expansion of the
error. This method of step control works well on many problems in practice.
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IV. IMPLEMENTATION OF SOLVERS

In some cases, you can improve ODE solver performance by specially coding your ODE file.
For instance to improve solver performance, often used in conjunction with a specially coded
ODE file, is to tune solver parameters. The default parameters in the ODE solvers are selected
to handle common problems. In some cases, however, tuning the parameters for a specific
problem can improve performance significantly. You do this by supplying the solvers with one
or more property values contained within an options argument.

Examples.1

solve this problem y=e Y, o<t<10 v(0)=0 Yeract = int(t + 1)

Solution:

MATLAB code:-

function solvesimpleeODE
[T,Ycompute]=ode45(@yprime, [0,20],0) ;
%code of comparison between computede
Yexact=yexact(T);
Yerror=abs(Ycompute-Yexact) ;

figure (1); plot(T,Ycompute, ’-bx’, T, yexact(T), ’-r’ )
title(’Analytic solution and computed solution’)

xlabel (’x-axis’)

ylabel(’y-axis’)

legend(’Analytic solution’,’ computed solution’)

figure (2); plot(T,Yerror, ’*-r’ )

title(’Analytic solution and Error’)

xlabel(’x-axis’)

ylabel (’y-axis’)

legend (’Error’)

%code for yprime juse as subfunction

function yprime=yprime(t,y);

yprime=exp(-y);

%hcode for yexact Juse as subfunction

function yexact=yexact(t);

and exact solution

yexact=log(t+1);
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Figure 1: comparison between computede and exact solution
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In the same problem above we see the solver of ode23 solution
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Figure 2: comparison between computede and exact solution

4.1 System of Equations

Example 2.

Consider the well-known lorentz equation given by

vi = —Byi + yus
!
Yo = —pY2+pys
Vi = e+ oy — s

Where 8 =3/8, p = 10, 0 = 28. the initial value are given by y1(0)=y2(0)=y3(0)=¢, ¢ is very
small positive number i.e £ = 10~10,

Solution: In the process of solving ODEs Using ODE solver available in MATLAB, it may
require to introduce additional argument so that when this parameter are changed in ODEs

the can be modified through these additional arguments for instant in the given lorentz equation
example involve 3, p,o can be consider as additional arguments, the are passed by declaring
them global variable. following is the code for solving this system using ode45
Solution:

MATLAB code.

function lorentzl

global beta rho sigma

rho=10;beta=8/3;sigma=28;

y0=[0 0 1e-10];

[T Y]l=ode45(@loren, [0 100],y0);

disp([T Y1)

figure(1);

plot(T,Y)

figure(2);

plot3(Y(:,1),Y(:,2),Y(:,3))

axis([10 42 -20 20 -20 25])

figure(3);

comet3(Y(:,1),Y(:,2),Y(:,3))

function dy=loren(t,y)

global beta rho sigma

dy=zeros(3,1);

dy(1)=-betax*y(1)+y(2)*y(3);

dy (2)=-rhox*y (2)+rho*y(3) ;

dy (3)=-y (1) *y(2)+sigma*y (2) -y (3) ;
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Figure 3: comparison between computede and exact solution

5.2 Converting ™ Order Ode to a System of Equations
Consider a general form of n® order ordinary differential equation given by
y'"™ = f(t,y, v,y -y
with initial condition »(0),y'(0)...y'n — 1)(0)

n—l)

The ODE solver available in MATLAB can only deal with first order explicit differential equa-
tions thus. before solving a higher order ODE. then one has to transform it into a set of first
order ODEs as follows set.

w=v,us=1....,un =y" ' and will be converted to first order explicit ODEs

Uy = u
uy, = ug
wy = fltus s, un)

With initial condition u1(0) = y1(0),ua(0) = ¢}, ..., un(0) = y™=1(0)
Example 3.
Plot the solution of the initial value problem

vV+u +y=0 y(0)=0, y(0)=1
on the interval [0.10] therefore

!

v =—u -y

mtroducing the new variable for y and v/
!

ur =y ug =1y
then we have

uy = us

u, = —uqug —ug

Solution:

MATLAB code

function initialvprob

[t,u] = oded5(@yprime, [0 10],[0,1]);
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plot(t,u(:,1))

title(JyJ:JJ + yy)! + y = O, Y(O) = 0’ y))(o) = 1))

xlabel(’t’), ylabel(’y’), grid

function du = yprime(t,u)

du = zeros(2,1);

du(1) = u(2);

du(2) = —u(D*u(2) - u(l);

v+ ey 0.4(0) = 0, (0] = 1
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Figure 4: Solution of second order ODE
4.3 System for Higher Order Coupled Equation

Consider the set of higher order couple differential equation given as
I(Tnj == f(ti .'I?: I!"'?m(m_]-J? y? y’? ey yn_l)
y(TnJ = g(ti .'I?: I!"'?m(m_]-J? y? y’? ey yn_l)

set the variable 21 = 2,20 = 2/, .., 2z = 2™V and zpit = ¥, Zmi2 = U ooy Zmen = y ™ Thus,
the original higher-order coupled ODEs can be converted to.

2y =

:‘:ﬂ, = f(t- EA PRV P :TTT-+11)
Znil = Zma2
Z:n+n = g(t‘ 215 225 0uns :m+n)

Which is desirable form to use solvers.

Finally, note that there are many different ways of coding the same thing. Play about with
MATLAB and you will probably discover multiple ways of doing the same thing, some more
efficient or easier than others.

Example 4.

Consider an example of motion of spacecraft in the gravitational field of the earth and the
moon. The governing equations are given by
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Where ry = /(z+ M)2 + 4%, ro=+/(r — E)?2+y? and E = 1 - M. For simplification,

it has been assumed that the earth does not move and is located at (-M,0) and the moon is at
dr d

(E,0). the initial values are given as x(0) = 1.15, F(I[‘]} =0, y(0)=0,and d—?: = 0.008688.

Let us introduce following auxiliary function

This yields

2] i <2

2 o 22y 4 21 — ELz;‘—sl-_-'U) . _-’U'{z:J—E)
= = 1 2

-~ !

<3 ) 24

o " Ez3 M z;

Zy Y —222-1-23—7‘1—7;2;‘1

=G|

Where 7y =+/(21 + M)? + 22, ry = /(21 — E)? + 22

initial values arez(0), z3(0), 23(0), z4(0), = [1.15, 0,0, 0.008688]

Solution:

MATLAB code.

function spacecraft

M=0.012277; E=1-M;

tspan=[0 24];

z0=[1.15,0,0,0.008688] ;
[t,z]=0de23(@zprime, tspan, z0);

%phase plot with local moon and earth
subplot(211); plot(-M, 0, ’ko’, E, 0, ’ko’)
hold on

plot(z(:,1), z(:,3));

%for animated plot

subplot(212); comet(z(:,1),z(:,3));
function dz = zprime(t,z)

M= 0.012277; E = 1-M;

%to simplefy the notation

zl = z(1); z2 = z(2); z3 = (3); z4 = z(4);

Rl = sqrt((zl + M)"2 + (z3)72);

R2 = sqrt((zl - E)"2 + (z3)72);

dz = zeros(4,1);

dz(1) = z2;

dz(2) = 2%z4 + z1 - Ex(z14M)/R1°3 - M*(z1-E)/R2"3;
dz(3) = z4;

dz(4) = -2%z2 + z3-E*z3/R1°3-M*z3/R2°3;
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Figure 5: Solution y(t) of proton transfer problem, semilogx plot.

4.4 Sti Equations
In many differential equation, some variable changed very rapidly while other change very
slowly. This type of differential equations i1s usually referred to as stiff equation.The term
“stiff” as applied to ODE’s does not have a precise definition. Loosely, it means that there 1s a
very wide range between the most rapid and least rapid (with ) changes in solution components.
For such type of differential equations the solver ode45 may not be suitable, an alternative solver

odelbs may be preferred. To understand the stiffness 1s to make the following observation.

1. From the explicit Runge-Kutta and Adams-Bashforth methods or other method, when
the require much smaller step for the solution accuracy then the system is probably stiff.
2. When the height order performs even more poorly than the low order method then this

problem are called stiff ODE

5.4.1 Sti Problems and the Choice of Solver
By a stiff ODE we mean an ODE for which numerical errors compound dramatically over time.
For example, consider the ODE.

y =100y + 100t + 1;y(0) =1
Since the dependent variable, y, in the equation is multiplied by 100, small errors in our
approximation will tend to become magnified. In general, we must take considerably smaller
steps in time to solve stiff ODE, and this can lengthen the time to solution dramatically. Often,
solutions can be computed more efficiently using one of the solvers designed for stiff problems.
Example 9.
The Robertson ODE system The Robertson ODE system
yi = —0.04y; + 10%yys,  vh=0.04y; — 10%yoys —3 x 10793,  ys =3 x 10793
Models a reaction between three chemicals, for 0 < ¢ < 3 with initial condition [1,0,0]

Solution:

MATLAB code.

function cheml

tspan = [0 3]; yzero = [1;0;0];

tic, [ta,yal = ode45(@chem,tspan,yzero); toc

subplot (121), plot(ta,ya(:,2),’-*")

ax = ax1s;

ax(1) = -0.2; axis(ax) % Make initial tramnsient clearer.
xlabel(’t’), ylabel(’y_2(t)’), title(’ode4d5’,’FontSize’,14)
tic, [tb,yb] = odel5s(@chem,tspan,yzero); toc
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subplot (122), plot(tb,yb(:,2),’-*’), axis(ax)

xlabel(’t’), yvlabel(’vyv_2(t)’), title(’odelbs’, ’FontSize’,14)
function yprime = chem(t,y)

%CHEM Robertson’s chemical reaction model.

% YPRIME = CHEM(T,Y).

yprime = [-0.04xy(1) + ledxy(2)xy(3);

0.04%y(1) - ledxy(2)*y(3) - 3eTxy(2)72;

3eT*y(2)°2];

c10? odedb
A .

E 3
K ‘
E
15F -
"]_ -
e
nsr .
D 1 1
0 1 2 3
t t

Figure 6: Chemical reaction solutions. Left: oded45. Right: odelbs.

Solver produce the result in seconds Time-step requires
odedh 0.609172 8209
odelbs 0.383132 34

The solutions agree to within a small absolute tolerance (note the scale factor 1073 for the y-
axis labels). However, the left-hand solution from ode45 has been returned at many more time
values than the right-hand solution from odelbs and seems to be less smooth. To emphasize
these points, plots oded5’s yo(t) for 2: 0 < ¢ < 2.1. We see that the t values are densely packed
and spurious oscillations are present at the level of the default absolute error tolerance, 106,
The Robertson problem is a classic example of a stiff ODE.

Many solvers behave inefliciently on stiff ODEs they take an unnecessarily large number of
intermediate steps in order to complete the integration and hence make an unnecessarily large
number of calls to the ODE function (in this case, chem). We can obtain statistics on the
computational cost of the integration by setting.

The behavior of ode45 typifies what happens when an adaptive algorithm designed for non stiff
ODEs operates in the presence of stiffness. The solver does not break down or compute an
inaccurate solution, but it does behave non smoothly and extremely inefficiently in comparison
with solvers that are customized for stiff problems. This is one reason why MATLAB provides
a suite of ODE solvers.
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V.COMPARISON OF SOLVERS

How to use ode4b instead of ode23 or odel5s. This program displays the solution to the screen
as 1t 1s computed and displays some statistics at the end of the run, we will find that the solu-
tion increases slowly from its initial value of tspan, at a time the reactant ignites and increases
rapidly to a value near some point. This increase takes place in an interval for the remainder
of the interval of integration, the solution is very near to its limit of point.

Modify the program to solve the IVP with the solver ode45 based on an explicit RungeKutta
pair: all you must do is change the name of the solver, you will find that the numerical in-
tegration stalls after ignition, despite the fact that the solution is very nearly constant then,
to quantify the difference, use tic and toc to measure the run times of the two solvers over
the whole interval and over the first half of the interval we will find that the non stiff solver
ode45 1s rather faster on the first half of the interval because of the superior accuracy of its
formulas this despite the minimal linear algebra costs in odelbs due to the ODE having only
one unknown. You will find that the stiff solver odelbs i1s much faster on the whole interval
because the explicit RungeKutta formulas of oded5 must use a small step size (to keep the
integration stable in the last half of the interval) and the BDFs of odel5s do not. The statistics
show that the RungeKutta code has many failed steps in the second half of the integration,
this 1s typical when solving a stiff problem with a method that has a finite stability region. so
the IVP can be stiff only on long intervals, in the first part of the integration the solution is
positive, slowly varying

ode23 1s a three-stage, third-order, Runge-Kutta method. ode45 is a six-stage, fifth-order,
Runge-Kutta method. ode45 does more work per step than ode23, but can take much larger
steps. For differential equations with smooth solutions, ode4b is often more accurate than
ode23. In fact, it may be so accurate that the interpolant is required to provide the desired
resolution.

5.1 MATLAB Code and Time in Second, Time-Step Required

Consider example 1 above

function solvesimpleode2

tic, [T, Ycompute]=ode4b (@yprime, [0,20],0); toc

length(T)

tic, [T1,Y1compute]=ode23(@yprime, [0,20],0); toc

length(T1)

%code of comparison between computede and exact solution
Yexact=yexact(T); Yerror=abs(Ycompute-Yexact);

Yiexact=yexact(T1); Ylerror=abs(Ylcompute-Ylexact);

figure (1); plot(T,Ycompute, ’-b*’, T, yexact(T), ’-r’ )

title(’Analytic solution and computed solution’); xlabel(’x-axis’); ylabel(’y-axis’)
legend(’Analytic solution’,’ computed solution’)

figure (2); plot(T,Yerror, ’*-r’ )

title(’Analytic solution and Error’); xlabel(’x-axis’); ylabel(’y-axis’)
legend(’Error’)

figure (3); plot(T1,Yicompute, ’-b*’, T1, yexact(T1), ’-r’ )
title(’Analytic solution and computed solution’); xlabel(’x-axis’); ylabel(’y-axis’)
legend(’Analytic solution’,’ computed solution’)

figure (4); plot(Ti,Ylerror, ’*-r’ )

title(’Analytic solution and Error’); xlabel(’x-axis’); ylabel(’y-axis’)
legend (’Error’)

%code for yprime Juse as subfunction

function yprime=yprime(t,y)

yprime=exp(-y);

%code for yexact juse as subfunction

function yexact=yexact(t)

yexact=log(t+1);

595 | Page




International Journal of Advanced Technology in Engineering and Science

Volume No 03, Special Issue No. 01, April 2015

WwWw.ijates.com
ISSN (online): 2348 — 7550

Solver produce the result in seconds Time-step requires
oded5 0.162406 56
ode23 0.091169 25

5.2 MATLAB Code and Time in Second, Time-Step Required

Consider example 2 above

function lorentzl2

global beta rho sigma
rho=10;beta=8/3;sigma=28;

y0=[0 0 1e-10];

tic, [T Y]=ode45(@loren, [0 100],y0); toc
figure(1); plot(T,Y)

figure(2); plot3(Y(:,1),Y(:,2),Y(:,3))
axis([10 42 -20 20 -20 25])

figure(3); comet3(Y(:,1),Y(:,2),Y(:,3))
length(T)

tic, [T2 Y2]=ode45(@loren, [0 100],y0); toc
figure(1); plot(T2,Y2)

figure(2); plot3(Y2(:,1),Y2(:,2),Y2(:,3))
axis([10 42 -20 20 -20 25])

figure(3); comet3(Y2(:,1),Y2(:,2),Y2(:,3))

length(T2)

tic, [T1 Yi1l=odelbs(@loren, [0 100],y0); toc
figure(1); plot(T1,Y1)

figure(2); plot3(Y1(:,1),Y1(:,2),Y1(:,3))
axis([10 42 -20 20 -20 25])

figure(3); comet3(Y1(:,1),Y1(:,2),Y1(:,3))

length(T1)
function dy=loren(t,y)

global beta rho sigma
dy=zeros(3,1);

dy (1) =-betaxy(1)+y(2)*y(3);
dy(2)=-rho*y(2)+rho*y(3) ;

dy (3)=-y (1) *y(2) +sigma*y (2)-y(3) ;

Solver produce the result in seconds Time-step requires
oded5 0.229720 5601

ode23 0.203336 5601

odelbs 0.003357 12

V1. EXPLICIT FORMULAS FOR STI SYSTEMS
6.1 The ode45 Program

Ode45 introduced in the late 1990s 1s based on an algorithm of Dormand and Prince. It uses six
stages, employs the FSAL(first same as last) strategy, provides fourth and fifth order formulas,

has local extrapolation and a companion interpolant.
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The Dormand-Prince method has seven stages, but it uses only six function evaluations per
step because it has the FSAL(first same as last)property, the last stage is evaluated at the
same point as the first stage of the next step. Dormand and Prince chose the coefficient of their
method to minimize the error of the fifth-order solution. This is the main difference with the
Fehlberg method, which was constructed so that the fourth-order solution has a small error. for
this reason, Dormand-Prince 1s more suitable when the higher-order solution is used to continue
the integration, a practice known as local extrapolation and solution components can change
substantially in the course of a single step, the values computed at the end of each natural step
may not provide adequate resolution for graphical display of the solution.

This 1s remedied by computing intermediate values by interpolation, specifically by com-
puting four values spaced evenly within the span of each natural step.

6.2 The ode23 Program

The new version of ode23 is based on the Bogacki- Shampine (2,3) pair [3] (see also [37]).
This FSAL pair was constructed for local extrapolation. In the standard measures, the pair
1s of high quality and significantly more efficient than the pair used in the previous version of
ode23. Accurate solution values can be obtained throughout a step for free by cubic Hermite
interpolation to the values and slopes computed at the ends of the step.

At the default tolerances ode23 is generally more expensive than ode45, but not by a great
deal, and 1t 1s to be preferred at cruder tolerances. The advantage it enjoys at crude tolerances
1s largely because a step in ode23 is about half as expensive as a step in ode4b, hence the step
size 1s adjusted more often. When a step fails in ode23, fewer evaluations of F are wasted. This
1s particularly important in the presence of mild stiffness because of the many failed steps then.
The stability regions of the (2,3) pair are rather bigger than those of the (4,5) pair when scaled
for equal cost, so ode23 is advantageous in the presence of mild stiffness.

VII IMPLICIT FORMULAS FOR STI SYSTEMS

7.1 The odel5s Program
The odelbs code 1s a quasi-constant step size implementation in terms of backward differences
of the Klopfenstein-Shampine family of NDF’s, but some options apply only to the codes for
stiff problems or even only to this particular code. Therefore the derivation of the NDF's, it
18 easy to accommodate the BDF’s in this framework. The user is, then, given the option of
integrating with the classic BDF’s rather than the default choice of the NDF’s. then also, the
user can reduce the maximum order from the default value of 5, should this appear desirable
for reasons of stability. To implement the NDF formula, we rewrite the Klopfenstein form to
make 1its evaluation efficient.

VIII. IMPLEMENTATION OF RUNGE-KUTTA-FEHLBERG METHOD

Before today’s version of ode45, there was an earlier one. In a 1969, Erwin Fehlberg introduced
called six stage Runge-Kutta method that requires six function evaluations per step. These
function values can be combined with one set of coeflicients to produce a fifth-order accurate
approximation and with another set of coefficients to produce an independent fourth-order ac-
curate approximation. Comparing these two approximations provides an error estimate and
resulting step size control and it takes six stages to get fifth order. It is not possible to get fifth
order with only five function evaluations per step.

In the early 1970’s Shampine and his colleague H. A. (Buddy) Watts at Sandia Laboratories
published a Fortran code, RKF45, based on Fehlberg’s algorithm. In 1977, made RKF45 the
ODE solver in text book ( Computer Methods for Mathematical Computations, by Forsythe,
Malcolm and Moler). a link to it is Fortransourcecode for RKF45 is still available from netlib.
RKF45 became the basis for the first version of ODE45 in MATLAB in the early 1980s and
for early versions of Simulink. The Felhberg (4,5) pair did a terrific job for almost fifteen years
until the late 1990s when Shampine and MathWorker Mark Reichelt modernized the suite and
mmtroduced a more efficient algorithm.
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Given the system of ode’s below can be solve using the Runge-Kutta-Fehlberg Method

yi = 10ys — 547"
vy = Sui® —10yy"
vy = 2up° — 1.25y5"
yfi — 8y2'5—5yg‘5
L =0

The 1implementation code 1s:

function sadisl

yo=[2, 0.25, 0.64, 0.64, 0.5];

[T45,Y45]=0de45 (@sadis, [0,10],y0);

figure(1);

plot(T45,Y45,’.7)

title(’Computed solution of Ode45 System’)
xlabel(’t-axis’)

ylabel(’y-axis’)
legend(’Y1’,°Y2°,°Y3?,°Y4’ ,°Y5?)
axis tight
function dy=sadis(t,y)
dy=zeros(5,1);
dy(1)= 10*y(5)- 5*y(1)~0.5;
dy(2)= 5%y(1)°0.5 - 10%y(2)~0.5;
dy(3)= 2%y(2)70.5 - 1.25 *y(3)~0.5;

dy(4)= 8%y(2)°0.5 - 5xy(4)~0.5;
dy(5)=0;

The solution from the common window how the values of independent variables are changing
from the initial vector condition.

Caomputed salution of Odeds System
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Figure 7: Solution of system of ODE’s as Runge-kutta-fehlberg method
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IX. CONCLUSION

1 In this dissertation, we have discussed different methods for solving first order, second
order ordinary differential equations and systems of ordinary differential equations upto
the higher order using build-in solvers in MATLAB.

2 Ode23 1s a three-stage, third-order, Runge-Kutta method. ode45 is a six-stage, fifth-
order, Runge-Kutta method. ode4b does more work per step than ode23, but can take
much larger steps. For differential equations with smooth solutions, ode4b is often more
accurate than ode23, 1t may be so accurate that the interpolant is required to provide the
desired resolution. ode4b is the anchor of the differential equation suite. The MATLAB
documentation recommends ode45 as the first choice. And Simulink blocks set oded5 as
the default solver.

3 Some necessary conditions, algorithms used in build-in solvers, codes in MATLAB, imple-
mentation of build-in solvers and definitions are given to examine the numerical solution
graphically. After that, by considering these conceptions and definitions the numerical
results suggest that, the odelbs solver 1s suitable for solving stiff problems and perform
competitively with the BDF method. The odel5s solver is faster as shown in table 3.5
and 5.6 because the equation is stiff. The method has shown the efficiency in terms of
execution time and maximum and in all the table discussed for non-stiff equation, ode23
faster in producing the results in seconds and in some equation of non stiff odel5s has lest
time-step than other solvers.also in table 3.6 ode4b is failed to some value of p, therefore
odelbs if the best solver to apply for stiff equations.

4 The implementation of Runge-kutta-fehlberg method adapts the number of position of
the grid point during the course of the iteration in attempt to keep the local error withing
some specified bound, the Runge-kutta-fehlberg method is an example of adapting time
stepping method. 1t use fourth-order and fifth-order Runge-kutter method that share
some valuation of f(t,y), in order to reduce the number of evaluations of f per time step
to six.

Finally, section (4) contains very useful descriptions of all of the build-in solvers used in

the MATLAB (program)

o
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