Vol. No.4, Issue No. 03, March 2016 www.ijates.com

PTMAC BASED ON RAZOR FOR ENERGY REDUCTION IN DSP

Karthika.M¹, Gayathri.R², Mahalakshmi.K³

^{1,2,3}ME VLSI Design, Thenni Kammavar Sangam College of Technology, (India)

ABSTRACT

The power optimization is achievable by dynamic voltage scaling using the fault tolerant technique by improving the accuracy and/or timing performance against power. Energy improvements have a strong dependency on the delay distribution of the circuit and the characteristics of the input signal. The fault tolerant technique is implemented using Razor approach. The target power is also obtain by using the programmable truncated multiplier (PTMAC) at the expense of degradation of the output signal to noise ratio. In the DSP architecture the combination of PTMAC and fault tolerant technique are used to reduce the supply voltage below the critical level. Truncated multiplication timing modulation properties are analysed and demonstrated using Xilinx 12.1. Finally the two techniques are upgrade the energy saving beyond that expected in the DSP architecture.

Keywords: DSP, Dynamic voltage scaling, Fault tolerant, PTMAC.

I. INTRODUCTION

Less power, area with high speed is the main theme in the VLSI based circuit design. Several techniques are exists to reduce the energy consumption.

Voltage scaling is an effective method to minimize the energy consumption in CMOS integrated circuits. The (DSP) digital signal processing system may possibly leverage unconventional voltage overscaling (VOS) to decrease energy consumption while maintaining the satisfactory signal processing performance. Scaling the supply voltage by a factor of K results in reduction in the dominating dynamic power consumption by a factor of K^2 and yields static power benefits [1].

In conventional practice, voltage scaling is lower bounded by $V_{dd-crit}$ (critical supply voltage) under which critical path delay equals the target clock period, voltage overscaling (VOS) (ie), overscaling the supply voltage below $V_{dd-crit}$. Digital signal processing systems by applying unconventional voltage overscaling levels to further improve the energy consumption levels while maintaining signal processing performance. The major disadvantage of VOS is the latches or flip-flop on the critical path need a long execution time [3]-[5].

Fault tolerant is a property that enables a system operating properly in the event of failure. This technique can be used to achieve power saving. It is dependent on process voltage temperature (PVT) and the circuit physical design.

The ultimate aim is to design a multiplier of which possess less area usage and power that is possible with the truncated multiplier [6]-[12]. The PTM mentions a full precision multiplier in which the elements of the partial product can be disabled a column wise manner through an external control word. This provides reduction in the

Vol. No.4, Issue No. 03, March 2016

www.ijates.com

dynamic power consumption. The advantages are including dynamic power reduction and Flexibility in accuracy selection.

The (Manuel de la Guia Solaz and Richard Conway) proposed a novel voltage management technique for dynamic voltage scaled (DVS) processor, based on it situ error detection and correction, called Razor [4]. In this technique, we use a delay-error tolerant flip-flop on the critical path to scale the supply voltage.

The PTMAC and the fault tolerant techniques are applied to a custom-designed fixed point multiply and accumulate (MAC) in the DSP structure.

The work of this paper is organised as follows. A voltage scaling, fault tolerant and truncated multiplication concept is deals in section II. Section III briefly explains the programmable truncated multiply and accumulate (PTMAC) architecture. The combined process of the PTMAC and the fault tolerance using Razor technique are analysed in section IV. Simulation result for power and energy reductions are reported in section V. Finally in section VI conclusion and scope for future work on this paper are presented.

II. BACKGROUND

2.1 Voltage Scaling Beyond V_{dd-crit}

Dynamic power consumption is the main component in many arithmetic unit circuits because of the high toggling profile of such structures. The switching activity of the energy consumed by a digital gate is defined as Pavg = $\alpha 0 \rightarrow 1$ CLV2 dd fclk in [13], where $\alpha 0 \rightarrow 1$ is defined as the average number of times in each clock cycle (at a frequency fclk) that a node with capacitance CL provide a power consuming transition. Reducing the supply voltage by a factor of K results in a quadratic developement in the power consumption rate of CMOS logic.

Scaling of Vdd results in timing penalties which increase as Vdd approaches the threshold voltages of the devices [14], relationship between the circuit delay (τd) and the supply voltage Vdd is given by τd = $CLVdd/\beta(Vdd - Vt)\alpha$, where CL is the load capacitance, β (gate transconductance), Vt (device threshold voltage), and α (velocity saturation index). We prefer to the critical supply voltage of a given architecture Vdd-crit, as the minimum supply voltage where timing on the critical path is reached for any expected PVT variations.

Scaling the supply voltage to $Vdd = K \cdot Vdd$ —crit, where 0 < K < 1 is referred to as VOS; although this technique results in further energy reduction almost proportional to K2, scaling Vdd below the critical supply voltage results in critical timing failure for certain input combinations under certain PVT conditions. This is impractical for use with designs that do not apply fault tolerant schemes.

2.2 Truncated Multiplication

Multipliers have become inevitable with the advancement of communication. In order to enable the implementation of critical algorithms in DSP architectures the advancing VLSI play a significant role. A truncated multiplier is an $n \times n$ multiplier with n bits output. In a truncated multiplier has n less significant bits of the full-width product are discarded, some part of the partial products are removed and replaced by a suitable compensation function, to trade- off accuracy with hardware cost. As a more columns are eliminated, the area and power consumption of the arithmetic unit are significantly reduced, and in most cases the delay also decreases. Truncated Multiplier has the advantage of reducing power consumption in the DSP systems. It is

Vol. No.4, Issue No. 03, March 2016

www.ijates.com

ijates

most commonly used in systems where least significant part of partial product can be skipped which leads to low power consumption, area and timing. Here the partial product is split into two sections namely the (LSP) and (MSP). The LSP is disabled or avoided to get the truncated output.

Truncated multiplications have been widely studied as a means of achieving both power and area improvements in the field of arithmetic design, at the expense of signal degradation. As the truncated multipliers are smaller than full-precision ones, they not only achieves improvements in power consumption and area, but result in different timing distributions. The existence of synergic benefits derived from the combination of truncated multiplication and VOS using a fault tolerance strategy is presented in brief where both techniques are applied to a custom-designed fixed point multiply and accumulate (MAC) structure.

III. PTMAC-A FLEXIBLE LOW-POWER DSP WITH PTM

To develop the usage of PTM to general DSP architectures, the PTMAC was introduced and analyzed in [12] and [19]. PTMAC, designed to exercise PTM in low-power biomedical applications with a need for modest DSP such as ECG filtering or fall detection, to utilize in this brief as a platform to combine the benefits of programmable truncation and fault tolerance.

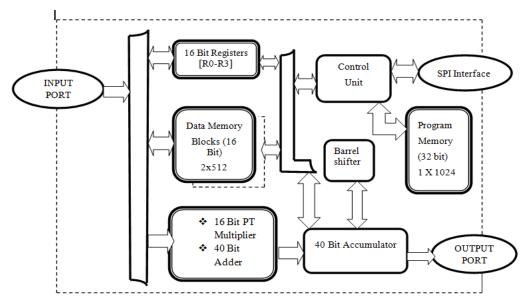


Fig.1. PTMAC top level diagram.

The proposed DSP, as depicted in Fig. 1, includes a control unit operating in a five-stage pipeline, program and memory blocks in a multibus Harvard configuration, some I/O connectivity and an arithmetic unit consisting of a MAC structure with 16-bit PTM, 40-bit accumulator, and a 40-bit barrel shifter for scaling and rotating the accumulated value.

The following gives the description of the important components of the DSP architecture.

3.1 Control unit

The control unit is simple 5 stage pipelines which fetch and decodes the instruction also controls the data flow, controls the ALU operations. The main aim of the design of the control unit is to reduce the power consumption

Vol. No.4, Issue No. 03, March 2016

www.ijates.com

of the internal block other than the arithmetic block. it allows the access of two data memory blocks and the program memory block during the instruction read operation.

3.2 Custom Instruction Set

A custom instruction set was implement for the DSP so as to maximize the utilization of the ALU. This will help in optimizing the power reductions Offer by the programmable truncated multiplier. All the Instructions designed are 32 bits wide. The set of instructions include

3.2.1 Arithmetic and logic instructions

The arithmetic instruction includes addition operation, subtraction, multiplication with and without truncation and also other operations such as multiply and accumulate operation, shifting, rotation of the accumulator output also squaring of the accumulated value. All the arithmetic instructions utilize the arithmetic unit effectively. A logic instruction performs all the logic operations.

3.2.2 Flow control instructions

The flow control instructions include instructions for jump operation, loop operations.

3.3.3 Dataflow instructions

It includes instruction for storing and loading data to and from different memory blocks.

3.3 Memory block

The memory block include two data memory blocks a program memory block. Each data memory has size 512 x 16 bits and the program memory size is 1024 x 32 bit, the data memory is store and load data, and program memory is helpful to store the instructions. It is possible to access 3 memory blocks in a single clock cycle.

3.4 Arithmetic and logic unit

The ALU consists of the 16 bit programmable truncated multiplier, 40 bit carry select adder, 40 bit barrel shifter/rotator and 40 bit accumulator. The ALU has a multiply and accumulate structure. A block diagram of the Arithmetic Unit is displayed in Fig. The arithmetic unit consists of

3.4.1. PTM

The PTM is designed to operate as standard 16x16 bit multipliers that enable a programmable truncation. It includes an additional control input for enabling and disabling the columns in the partial product matrix. Thus the addition control input "truncation control" is used to control the truncation level of the multiplier.

3.4.2. Barrel shifter

A 40 bit barrel shifter/rotator is the main for shifting and rotating the accumulated output. The shifter process left shifting, right shifting, left rotation and right rotation on the output of 40 bit accumulator.

3.4.3. Accumulator

A 40 -bit accumulator save the final result of the arithmetic operations. It is implemented from D flip-flops.

3.4.4. Carry select Adder

A 40- bit carry select adder is used for addition as well as subtraction operations. The carry select adder is a simple but high speed adder. The logic unit performs all logic operations on the two input data.

Vol. No.4, Issue No. 03, March 2016 www.ijates.com

IV. RAZOR IMPLEMENTATION

To goal the fault tolerance, the accumulator of the PTMAC was replaced by a fault tolerant version named Razor Accumulator. The original flip-flops were substitute by a version of the Razor registers presented in [3]. In order to detect an error in the circuit level, each flip-flop is augmented by a shadow flip-flop. This flip-flop was clocked by a delayed clock. If the combinational logic met the setup time of the main flip-flop, then the main and delayed flip-flop will latch the same value. In this case, the error signal remains low. If the main flip-flop setup time is not met, then the main flip-flop will latch a value that is different from the shadow flip-flop. The proposed augmented cells were design and stored as library cells for post synthesis insertion. Such a cell obey the original implementation is Razor implementation, replacing the shadow latch within the Razor registers with a shadow-flip-flop is used to avoid synthesis issues. The metastability detector required in Razor implementations was modelled as the delay of an inverter. It added as a constraint to the hold time of the Razor accumulator. In this method, all timing violations potentially causing metastability are then detected as timing errors, providing a lower bound for the performance of Razor. The Razor technique was implemented using NI multisim suite 12.0 software.

V. RESULTS

On-Chip	Power (W)	Used	Available	Utilization (%)
Clocks	0.000	1	-	-
Logic	0.000	0	46560	0.0
Signals	0.000	178	-	-
IOs	0.000	66	240	27.5
DSPs	0.000	2	288	0.7
Leakage	0.712			
Total	0.712			

Fig .2. Power value of normal multiplier

On-Chip	Power (W)	Used	Available	Utilization (%)
Clocks	0.000	1	-	
Logic	0.000	61	46560	0.1
Signals	0.000	109		
IOs	0.000	67	240	27.9
Leakage	0.712			
Total	0.712			

Fig .3. Power value of PT Multiplier

Vol. No.4, Issue No. 03, March 2016 www.ijates.com

Table .1. Power of PT and Razor technique

SUPPLY VOLTAGE(V)	PTMAC BLOCK	RAZOR TECHNIQUE
20 V	800 (pW)	425 (pW)
17 V	578 (pW)	314 (pW)
12 V	288 (pW)	169 (pW)
10 V	200 (pW)	125 (pW)
7 V	98 (pW)	74 (pW)

VI. CONCLUSION

Fault tolerance was provided by implementing a conservative approach to the Razor I technique, and achieved energy reductions over the original DSP implementation by enabling the reduction of $V_{\rm dd}$ beyond the original critical supply level. Truncated multiplication was achieved by implementing a PTM, and resulted in energy savings of the full design. Energy reductions achieved by fault tolerant techniques are limited by the overheads required to provide error resilience and the amount of operations that need correction, therefore, they are highly influenced by the delay distribution and maximum value of the system critical paths. The truncated multiplication is achieved by interfacing them effectively with respect to the conditions after checking and monitoring than the previous method. The use of Razor on a PTMAC structure has been tested at a post synthesis simulation level to study the effect and interactions of both energy reducing techniques on a previously tested DSP design. The timing and power effects of VOS with error correction and the application of programmable truncated multiplication resulted in significant power reductions. The power consumption of Razor on a PTMAC structure is also implemented in Multisim software. Thus, we have analyzed and compared the performance results better than the conventional approach in terms of area, power and speed.

In the future work, delay- modulation properties of truncated multiplication and BIST using testable circuits can be exploited to improve the energy.

REFERENCES

[1] Anantha P. Chandrakasan, Miodrag Potkonjak, Renu Mehra, Jan Rabaey, and Robert W. Brodersen (1995) 'Optimizing Power Using Transformations', IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 14, no. 1, pp. 12–31.

Vol. No.4, Issue No. 03, March 2016

www.ijates.com

SSN 2348 - 7550

- [2] Byonghyo Shim, Srinivasa R. Sridhara, Naresh R. Shanbhag (2004) 'Reliable Low-Power Digital Signal Processing via Reduced Precision Redundancy', IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 12, no. 5, pp. 497–510.
- [3] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge (2004) 'Razor: Circuit-level correction of timing errors for low-power operation', IEEE Micro, vol. 24, no. 6, pp. 10–20.
- [4] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham (2003) 'Razor: A low-power pipeline based on circuit-level timing speculation' in Proc.36th Annu. IEEE/ACM Int. Symp.Microarch, pp. 7–18.
- [5] Jiun-Ping Wang, Shiann-Rong Kuang, and Yuan-Chih Chuang (2006) 'Design of reconfigurable low-power pipelined array multiplier' in Proc. Int.Conf.Commun., Circuits Syst., vol. 4, pp. 2277–2281.
- [6] Jin-Hao Tu and Lan-Da Van (2009) Power-efficient pipelined reconfigurable fixed-width Baugh-Wooley multipliers," IEEE Trans. Comput., vol. 58,no. 10, pp. 1346–1355
- [7] Manuel de la Guia Solaz and Richard Conway (2012) 'A flexible low power DSP with a programmable truncated multiplier' IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 11, pp. 2555–2568.
- [8] Matthew Fojtik, David Fick, Yejoong Kim, Nathaniel Pinckney, David Money Harris, David Blaauw and Dennis Sylvester (2012) 'Bubble Razor: An architecture-independent approach to timing-error detection and correction', in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2012, pp. 488–490.
- [9] M. de la Guia Solaz and R. Conway (2010) 'Comparative study on wordlength reduction and truncation for low power multipliers', in Proc. 33rd Int. Conven., pp. 84–88.
- [10] M. de la Guia Solaz, A. Bourke, R. Conway, J. Nelson, and G. OLaighin (2010) 'Real-time low-energy fall detection algorithm with a programmable truncated MAC', in Proc. IEEE Annu. Int. Conf. Eng. Med. Biol. Soc, pp. 2423–2426.
- [11] Nicola Petra, Davide De Caro, Valeria Garofalo, Ettore Napoli, and Antonio G. M. Strollo (2010)

 Truncated binary multipliers with variable correction and minimum mean square error IEEE

 Trans.Circuits Syst. I, Reg. Papers, vol. 57, no. 6, pp. 1312–1325.
- [12] Paul N. Whatmough, Shidhartha Das and David M. Bull (2013) 'A low-power 1 GHz razor FIR accelerator with time-borrow tracking pipeline and approximate error correction in 65 nm CMOS' in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 428–429.
- [13] Rajamohana Hegde, Naresh R. Shanbhag (2001) 'Soft digital signal processing', IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9, no. 6, pp. 813–823.
- [14] Shen-Fu Hsiao, Jun-Hong Zhang Jian, and Ming-Chih Chen (2013) 'Low-cost FIR filter designs based on faithfully rounded truncated multiple constant multiplication/accumulation', IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 5, pp. 287–291.
- [15] Shiann-Rong Kuang and Jiun-Ping Wang (2010) 'Design of power-efficient configurable booth multiplier', IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57,no. 3, pp. 568–580.
- [16] Shidhartha Das, Carlos Tokunaga, Sanjay Pant, Sanjay Pant, Sudherssen Kalaiselvan, Kevin Lai, David M. Bull, and David T. Blaauw (2009) 'RazorII: In situ error detection and correction for PVT and SER tolerance', IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 32–48.

Vol. No.4, Issue No. 03, March 2016

www.ijates.com

- [17] Sunder S. Kidambi, Fayez El-Guibaly, and Andreas Antoniou (1996) 'Area-efficient multipliers for digital signal processing applications', IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 43, no. 2, pp. 90–95.
- [18] T. Sakurai and A. Newton (1990) 'Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas', IEEE J. Solid-State Circuits, vol. 25, no. 2, pp. 584–594.