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ABSTRACT 

Quantization  of filter coefficients are involved in real world implementation of digital filters i.e. coefficients are 

approximated using fixed point mathematics. The quantization of filter coefficients varies the pole-zero plot and 

frequency response of quantized filter from the originally desired unquantized filter’s pole-zero plot and 

frequency response respectively. This paper presents a design method of quantized finite impulse response (FIR) 

filters to address design and implementation issues of real world implementation. Using Canonical Signed Digit 

(CSD) representation, the floating point FIR filter coefficient is converted to fixed point multiplier-less FIR filter 

coefficient. The fixed point filter coefficients can be implemented in smaller and faster hardware than floating 

point filter coefficients. The filter is realized using cascade form and the effect of quantization of filter 

coefficients in one cascade section is compensated in other cascade section by pushing the zeros. The proposed 

method concludes that quantized FIR filter using CSD technique is most efficient and matches with the desired 

frequency response keeping small and fast hardware. 
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I. INTRODUCTION 

The coefficient of a filter designed is floating point number and any challenges arising in implementation of 

deigned filter in fixed point hardware coefficient are not considered. For real world implementation, the 

hardware as well as signal processing aspects must be considered simultaneously to obtain an optimum filter 

implementation. The frequency response of the final fixed point filter depends on the approximations made 

during the conversion from floating point to fixed point. A digital FIR filter having floating point filter 

coefficient can be designed using the windowing method and the Parks-McClellan method [1,2]. For a real time 

application, the floating point coefficients of filter must be converted to fixed point to perform more quickly in 

hardware. A multiplier-less implementation of a filter is used for embedded system applications, multiplications 

are replaced with the faster and cheaper shifts and additions. The filter coefficients are converted to a fixed 

point, multiplier-less by quantizing the original floating point filter coefficients. Quantization alters the zeros of 

the original filter as the filter coefficients are either truncated or rounded off during quantization and 

consequently the frequency response of original filter is also altered.This paper presents a method for 

conversion of a finite impulse response (FIR) floating point filter design into a fixed point multiplier-less filter 

design. FIR filters are often preferred over Infinite Impulse Response (IIR) filters since they exhibit no stability 
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problems and can be designed with exact linear phase. However, FIR filter suffers more computational 

complexity as compared to IIR filters for equivalent magnitude response. Thus an approach is proposed to 

reduce the complexity of the FIR filters by ensuring that the frequency response of quantized filter closely 

matches with the unquantized frequency response (in magnitude and phase both). The method developed here 

take towards the approach of quantizing the cascaded sections so that the finite word length compensation in one 

section do not effects the other section. In multiplier-less filter, all mathematical operations are represented by 

shifts and additions that can be achieved by reducing the number of non-zero bits in every multiplier coefficient 

to a very small number. This simple method is called as „compensating zeros‟. Several other techniques have 

also been proposed to improve the efficiency of FIR filter in terms of the requirement of computations. Some of 

which include IFIR technique that reduce the use of multipliers and adders at the cost of large system delay and 

other technique of implementing by rounding operation for efficient FIR filters. By coefficient rounding in FIR 

filter, we may design multiplier-less filters which can be applied in many signal processing applications in the 

field of both uniform and non-uniform filter bank. Multiplier-less filter design can minimize the reduction in 

performance by several optimization techniques like genetic algorithms, simulated annealing and integer 

programming. However, optimization techniques are complex, require long time for process run and also not 

guarantees for the performance. Therefore, compensating zeros technique is an intuitive method that 

relinquishes unnecessary optimization by involving solutions of linear system of equations. 

 

II. FIGURES OF MERIT 

The performance of fixed point filter is evaluated using the following figure of merits [3]:  

 Mean-Squared Error (MSE): It is the average of squared error i.e. difference between the magnitude 

frequency response of the quantized filter and the unquantized filter. It should be as low as possible.  

 Hardware complexity: The hardware size is determined by the total number of logic cells used on the 

FPGA. In most of the FIR filter applications, the number of multipliers is excessively required when 

compared to IIR filter which increases the hardware complexity. Thus it is required that the coefficient of 

quantized filter should be indicated as sum and differences of powers of two using a minimum number of 

terms. CSD representation uses minimum number of nonzero terms thus the coefficient are represented 

using canonical signed digit (CSD) representation [4-6]. Before implementing quantized filter design into 

actual hardware, the complexity of hardware can be estimated from of all filter coefficients in CSD format  

in terms of T, total number of non-zeros terms used for representing filter coefficients. In general, for faster 

and smaller hardware implementation, the T is small. 

 Throughput: The rate of generation of output samples, in samples per second. 

 Latency: The time taken for obtaining the first filter output after applying the first filter input.  

 Power consumption: The average power required for calculating one output sample.  

 The goal of the proposed method for design of quantized FIR filter is to achieve a small magnitude MSE 

while keeping other hardware perspective: hardware size, throughput and latency into consideration with low 

cost. To achieve small magnitude MSE and closer coefficient of quantized and unquantized filters, the 

number of non-zero bits used for representing coefficients of filter, T, should be high. Conversely higher 
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value of T makes the magnitude MSE worse. Hence, between the performance and hardware cost there is 

always a trade-off. 

 

III. FILTER STRUCTURES 

 

Filter designs has three basic structures: direct, cascade, and lattice by which it can be implemented in hardware. 

If the zeros of the FIR filters are not clustered but very uniformly distributed then the direct structure performs 

well. However, performance degrades quickly with direct structure. In general, when cascade and lattice 

structures are used, infinite impulse response (IIR) filters, pole-zero are more robust to quantization effects.The 

lattice structure cannot be employed because most of the FIR filters have linear phase i.e. the coefficients are 

symmetric which equals ±1. Though direct structure performs well but cascade structure is preferred because 

quantization of one coefficient of FIR filter affects all of the zeros of filters in direct form structure. While using 

cascade structure, the quantization of coefficients effects only in one cascaded section leaving the zeros in other 

section unaffected. Here, compensating zeros method is performed using cascade structure. However, it takes 

this idea of „simple quantization‟ technique a step further that uniformly divides up the given T non zero terms 

across coefficient in the cascaded section in CSD format.   Figure 1 indicates the block diagram to direct form of 

h(n) and its equivalent cascaded form. For implementation of filter in cascade structure, h(n) is divided into two 

subsections c1(n), c2(n) and gain k. 

 

Figure 1. Direct form of h(n) and the equivalent cascade form using c1(n), c2(n) and k 

The zeros of the original filter are divided into two groups by scanning the pole zero plot from ω = 0 to ω = π in 

anticlockwise direction. First zero encountered, its conjugate and their reciprocals are placed in one group and 

next zero encountered, its conjugate and their reciprocal are placed in another group. Similarly the pole zero plot 

is scanned and zeros are divided into groups. The group with lesser number of zeros is considered as group 1, c1, 

and group with larger number of zeros is considered as group 2, c2 [3]. Pole zero plot and grouping of zeros in 

two groups is shown in figure 2 for a 31 length FIR filter.By dividing the zeros into two section using this 

method keeps the zeros of both the section spread out in the entire pole zero plot and thus it minimizes the 

quantization effect [7].  
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PZ plot after grouping
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Figure 2. Pole-zero plot for 31 length FIR filter. The zeros of the filter are divided into two 

cascaded sections, blue zeros represent first section c1(n), and the green zeros represents second 

section c2(n) 

IV. SIMPLE QUANTIZATION 

The quantizing process involves conversion of fixed point cascaded coefficient and gain to floating point 

coefficient and allocating T CSD terms to all the coefficients of two unquantized cascaded sections and the 

unquantized gain factors. All the reasonable distributions are examined while distributing a fixed number of 

CSD terms T to single cascade sections with n coefficients. Reasonable distributions should be mostly uniform 

i.e. all the coefficient should receive atleast one CSD terms and allocating extra terms to those coefficients that 

are different from their unquantized values. Choosing the closest value expressed in CSD by allocating number 

of terms, fixed point value of each coefficient is found. All reasonable distributions can also help in finding the 

one that best results in small magnitude MSE of the frequency response of the resulting system. 

Table 1: Unquantized (c1 & c2) and simple quantized coefficients (c1’ & c2’) and their CSD representation 

n c1 c1’ CSD T n c2 c2’ CSD T 

0,14 1.00000 1 1 1 0,16 1.00000 1 1 1 

1,13 0.21382 0.375 0.101 2 1,15 0.21382 0.21875 0.01001 2 

2,12 -1.04815 0.625 0.101 2 2,14 -1.04815 -1.0625 1.0001 2 

3,11 -1.23282 0.375 0.101 2 3,13 -1.23282 -1.25 1.01 2 

4,10 -1.11120 1.0625 1.0001 2 4,12 -1.11120 -1.125 1.001 2 

5,9 -0.21548 1.5 10.1 2 5,11 -0.21548 -0.21875 0.01001 2 

6,8 0.83675 2.5 10.1 2 6,10 0.83675 0.75 1.01 2 

7 1.84215 2.5 10.1 2 7,9 1.84215 1.75 10.01 2 

Sub-Total 28 8 2.16289 2.125 10.001 2 

k  0.0212 0.015625  0.000001 1 Sub-Total 32 

                                                                                                                                         Total T = 61 
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To ensure each cascade section to be efficient, atleast two of the coefficients in each section must be represented 

in CSD format [8]; this requires coefficients c1(n) and c2(n) to be normalized so that in each section first and last 

section are one and also it is necessary to include gain factor k.When windowed FIR filter is applied with simple 

quantization method, the unquantized cascade coefficients c1(n) and c2(n) are quantized independently to the 

simple quantized cascade coefficient c1’(n) and c2’(n). The unquantized filter h(n) is compared to simple 

quantized c1’(n) and c2’(n) frequency response. However, after simple quantization a linear phase response 

remains same but the magnitude response is significantly different from the original. Figure 3 indicates 

frequency response of an unquantized filter coefficient and simple quantified filter coefficient for a 31 length 

FIR filter.  
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Figure 3. Frequency response of 31 length FIR filter h(n) in blue and frequency response after 

simple quantization in black 

After quantization of the two cascaded section the coefficients are not exactly the same hence poles and zeros of 

the filter will be different from original filter. Consequently the filter response of the filter is altered. It has 

observed that if the zeros are clustered the sensitivity of zero location is very high due to quantization [9].    

  

V. REFINEMENT: COMPENSATING ZEROS 

The refinement to the cascaded design called „compensating zeros‟ generates an alternative fixed point filter 

design to closely match with floating point frequency response. This quantization method estimates quantization 

error of the first cascade section while quantizing the other section [10]. 

The compensating zero quantization method starts with quantizing first cascade section c1(n) to c’1(n) and the 

gain factor k to k’. Now c2(n) is quantized to ccomp(n) instead of quantizing c2(n) to c’2(n) so that when c1’(n) is 

cascaded with ccomp(n), it achieves original filter h(n). Here ccomp(n) is called compensating section since it 

compensate the degrading performance while quantization of c1’(n). 



 

164 | P a g e  

 

If c1(n), c2(n), c’1(n), c’2(n) and ccomp(n) has the transfer function C1(z), C2(z), C’1(z), C’2(z) and Ccomp(z) 

respectively then the unquantized cascade filter H(z) is expressed as  

H(z)=kC1(z)C2(z)     (1) 

Where k is the gain factor. The semi-quantized filter using compensating zero method transfer function is given 

by [10] 

H’comp(z)=k’C’1(z)Ccomp(z)   (2) 

The goal is to achieve unquantized and semi-quantized transfer function to be equal, thus [10] 

H(z)=H’comp(z)   i.e. 

k’C’1(z)Ccomp(z)=kC1(z)C2(z)  (3) 

In (3), on the right hand side k, C1(z) and C2(z) are known unquantized filters. On the left hand side k’ and C1(z) 

are known after quantizing k and C1(z). Thus ccomp(n) can be obtained by solving (3) for M unknown frequencies 

[11], where M is the number of unknown terms in the ccomp(n). For a 17 length compensating section the number 

of unknown terms are 8, since coefficients are symmetric and one of the coefficient is 1. 

The coefficients obtained after solving (3) i.e. ccomp(n) are quantized and represented in CSD terms using same 

number of T used for representation of c2’(n) i.e. 32. The frequency response of the filter obtained after 

replacing the second quantized cascaded section c’2(n) with compensating zero section c’comp(n) is shown in 

figure 4. The frequency response of this designed filter closely matches with the frequency response of original 

filter. Figure 5 shows the comparison between pole zero plot of the original filter and compensating zeros 

quantized method. The zeros of first section have been shifted from its original position by quantization of 

coefficients and this shifting is being compensated by zeros of second section i.e. compensating zeros section by 

shifting the zeros of second cascade section in opposite direction. As the name of the method depicts 

„compensating zeros‟, the frequency response of the quantized filter is compensated to match with frequency 

response of original desired filter by compensating the zeros of the second section.  

Table 2: Unquantized Compensating zeros coefficients (c_comp), its quantized coefficients (c_comp’) and its CSD 

representation 

n c_comp c_comp’ CSD T 

0,16 1.00000 1 1 1 

1,15 1.33116 1.25 1.01 2 

2,14 -2.25159 -2.25 10.01 2 

3,13 -1.89096 -1.875 10.001 2 

4,12 -0.89474 -0.875 1.001 2 

5,11 -0.83662 -0.75 1.01 2 

6,10 1.48971 1.5 10.1 2 

7,9 2.52829 2.5 10.1 2 

8 2.79878 2.75 100.01 2 

Sub-Total 32 
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The MSE of simple quantized method 3.088e-2 has been reduced to 1.079e-3 for compensating zeros method. 
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Figure 4. Frequency response of 31 length FIR filter h(n) in blue, frequency response after 

simple quantization in black and frequency response after compensating zero quantization in 

red. 
 

VI. CONCLUSION 

 

The effect of quantization of first cascade section due to approximation of coefficients is compensated by the 

second cascaded section by using compensating zeros method. This method can be used to quantize any FIR 

filter and the method does not require optimization as other methods. The result of this method is obtained by 

solving a linear system of equations. Moreover, compensating zeros quantization ensures that the frequency 

response of designed quantized filter closely matches with the frequency response of original desired filter both 

in magnitude and phase. The MSE for compensating zeros quantization has been reduced than the MSE for 

simple quantization and other, the hardware requirement for real world implementation of compensating zeros 

quantized filter is smaller and faster than the simple quantized filter.  
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