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ABSTRACT 

Diffraction of normal shock wave with yawed wedges have been considered in this paper. Pressure distribution 

over the diffracted shock has been obtained for Mach number of the shock wave equal to two and angle of yaw 

to 40
0
. 
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I. INTRODUCTION 

 

Lighthill  (1949) considered the diffraction of a normal shock wave past a small bend of angle . Chester (1954) 

extended the work of Lighthill (1949) to the case of yawed wedges i.e in the case of Chester (1954), leading 

edge of the wedge is not parallel to the normal shock front.  In Lighthill (1949) case the flow is expending with 

respect to time while in Chester’s (1954) case it could be regarded as growing with respect to the axis of cone of 

disturbance. Chester (1954) determined pressure distribution over the wedge surface while Srivastava (2007) 

determined the Vorticity distribution of a particle over the diffracted shock for varying angle of yaw and for the 

same numbers of the shock wave as were taken by Lighthill (1949). Earlier Srivastava (2003) has obtained the 

Vorticity distribution when the angle of yaw equals zero.  In the present investigation we have obtained the 

pressure distribution over the diffracted shock for M=2 (M is the Mach number of the shock wave) and =400 

( is the angle of yaw).  Reference may be made to the book by Srivastava (1994). 

 

II. MATHEMATICAL FORMULATION 

 

If the velocity of the shock is U and wedge is yawed through an angle , then the point of intersection of the 

shock front and leading wedge travels along the leading edge of the wedge with velocity  If an equal 

and opposite velocity is superimposed on the whole field, the shock becomes stationary and we have the steady 

flow behind the shock. The flow in fact in many respects has similarity to Busemann’s (1943) cone field 

problem. In the introductory part we have indicated how the flow is developing both in Lighthill case (1949) and 

Chester’s case (1954). 

Behind the normal shock there will be region of uniform flow which is not affected by the presence of the 

wedge. In this region the fluid velocity, pressure, density and sound velocity are denoted by  and  

respectively; ahead of the shock the corresponding quantities are and . U being the velocity of the 

shock, the shock transition relations for 4.1  ( being the ratio of specific heats) give  
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Let  be the Mach number of the shock and let  be the Mach number of the uniform flow behind 

the shock, then form (1) 

                       - (2) 

As indicated earlier imposition of velocity 
sin

U  on the whole field in a direction opposite to the direction 

of motion of the point of intersection of the shock and leading edge, the shock becomes stationery. The resultant 

velocity behind the shock for stationary configuration say V1 is  
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The velocity is supersonic provided 
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 There is a restriction on  for different Mach numbers for V1 to be supersonic. 

Now it is assumed that the condition (4) is satisfied. The perturbations introduced by the presence of the wedge 

are confined to the region bounded by the shock front and Mach cone with the vertex at the junction of the 

shock and the wedge leading wedge. This axis of the Mach cone is in the direction of  and subtends an angle  

with the shock (see Figure-1 of Chester (1954)) where 
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In may be mentioned here that for the relation (3), it would be helpful to see the Figure-1 of Chester (1954). 

Using small perturbation theory and using conical field transformation as used by Chester (1954), we obtain a 

single partial differential equation in p. The equation in p is 
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In (6) 
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 ,  is the disturbed pressure and other quantities have already been defined, x, y are the 

transformed coordinates. 

The characteristics of the differential equation (6) are tangents to the unit circle 122  yx  which in the 

zyxO  system is the cone 2222 tanzyx   Chester (1954). The region of disturbance will therefore be 

bounded by the Mach cone, wedge surface and the diffracted shock. If we take a section normal to the axis of 

Mach cone, the disturbed region will be represented by the arc of the circle 122  yx , the wedge portion by 

the straight segment and the shock front by an arc in the (x, y) system of coordinates. 

In the final transformed plane Chester (1954) gives 
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111 iyxz  and on the real axis we have 11 xz  . 

In order to find out the pressure over the diffracted shock, we have to obtain the imaginary part on the right hand 

side of (7) and equate it to the imaginary part of (7) on the left hand side.  It one does that we have 
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On the shock we have relation 
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In the transformed plane shock extends from 11 x  to ,1 x when 11 x , 0
k

y
 and when 

,1 x .1
k

y
  Integration of (8) from 11 x  to ,1 x  with breakup intervals gives the pressure 

distribution over the diffracted shock. 

 

III. NUMERICAL CALCULATIONS 

 

The numerical calculations have been carried out for M=2 and =40
0
. The following table show the results of 

the calculation: 

Table 

M=2 and =40
0
 

k
y

  
0 0.2 0.4 0.6 0.8 1 

p 5.28 3.17 1.56 0.49 0.12 0 
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The table shows the value of p is highest at 0
k

y
i.e at the point of intersection of shock and wall surface. 

Then it falls and finally approaches zero at 1
k

y
i.e at point of intersection of shock and unit circle. The 

results are quite consistent. 

 

IV. CONCLUSION 

 

Diffraction of normal shock wave with yawed wedges are for more complicated than the case of diffraction of 

normal shock wave when the angle of yaw is zero. This is due to the fact that in the case of yawed wedges, the 

problem becomes three dimensional than what was in the case of angle of yaw being zero where the problem is 

two dimensional. These problems have a bearing in aeronautical engineering and will be useful in designing 

also. 
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