Vol. No.4, Issue No. 06, June 2016

www.ijates.com

FUZZY CONTRA D-CONTINUOUS FUNCTIONS AND FUZZY STRONGLY D-CLOSED SPACES

¹M.K. Mishra, ²M. Shukla, ³D.Bindhu

¹ Professor, Asst.Prof. EGS Pillay Engineering College, Nagapattinam (India) Asst. Prof Arignar Anna Arts & Science College, Karaikal (India)

ABSTRACT

In this paper we study a new class of some strong form of fuzzy contra D-continuous functions and fuzzy strongly D-closed and introduce some of its characterization in fuzzy topology

Key Words: Fuzzy Super Closure, Fuzzy Super Interior, Fuzzy Super Closed, Fuzzy Super Open Set, Fuzzy Continuity, Fuzzy Super Continuity.

I INTRODUCTION

Several generalization of Fuzzy Super open and super closed sets Let X be a nonempty set and I =[0,1]. A fuzzy set on X is a mapping from X to 1. The null fuzzy set 0 on X into I which assumes only the values 0 and the whole fuzzy set 1 is a mapping from X on to [0, 1] which takes the values 1 only . The union (resp. intersection) of family $\{A\alpha:\alpha\in\wedge\}$ of fuzzy set of X is defined to be the mapping sup $A\alpha$ (resp. inf $A\alpha$). A fuzzy set A of X is contained in a fuzzy set B of X if $A(x)\leq B(x)$ for each $x\in X$. A fuzzy point $x\beta$ in X is a fuzzy set defined by $x\beta(y)=\beta$ for y=x and x(y)=0 for $y\neq x$, $\beta\in[0,1]$ and $y\in X$. A fuzzy point $x\beta$ is said to be quasicoincident with the fuzzy set A denoted by $x\beta qA$ if and only if $\beta+A(x)>1$. A fuzzy set A is quasi coincident with a fuzzy set B is denoted by AqB if and only if there exists a point $x\in X$ such that A(x)+B(x)>1. $A\leq B$ if and only if $A\alpha B^C$.

A family τ of fuzzy set of X is called the fuzzy topology on X if 0 and 1 belongs to τ and τ is closed with respect to arbitrary union and finite intersection . The member of τ are called fuzzy open sets and their compliment are fuzzy closed sets. For a fuzzy set A of X the closure of A (denoted by cl(A)) is the intersection of all the fuzzy closed superset of A and the interior of A (denoted by int(A)) is the union of all fuzzy open subsets of A.

In this paper we use the aberrations; Fuzzy D-open(FDO), Fuzzy D-closed (FDC)

II PRELIMINARIES

Let X be a nonempty set and I=[0,1] A fuzzy set in X is a mapping from X in to I. The null fuzzy set 0 is the mapping from X in to I which assumes only the value 0 and the whole fuzzy set 1 is a mapping from X in to I

Vol. No.4, Issue No. 06, June 2016

www.ijates.com

which takes value I only. The union $\bigcup A_{\alpha}$ (resp. intersection $\bigcap A_{\alpha}$) of a family $\{A_{\alpha}: \alpha \in A\}$ of fuzzy sets of X is defined to be the mapping Sup A_{α} (resp. Inf. A_{α}). A fuzzy set A of X is contained in a fuzzy set B of X denoted by A B if and only if $A(x) \leq B(x)$ for each $x \in X$. The complement A^{C} or 1-A of a fuzzy set A is defined by 1-A(x) for each $x \in X$. A fuzzy point x in X is a fuzzy set defined by

$$\beta \qquad \qquad \beta \quad \in (0,1] \text{ for } y = x \; , y \in X$$

$$\alpha \beta(y) = 0 \qquad \qquad \text{otherwise}$$

where x and β are respectively called the support and value of x. A fuzzy point $x\beta \in A$ if and only if $\beta \le A(x)$. A fuzzy set A is the union of all fuzzy points which belongs to A. A fuzzy point $x\beta \in A$ is said to be quasi-coincident with the fuzzy set A denoted by $x\beta qA$ if and only if B + A(x) > 1. A fuzzy set A is quasi-coincident with a fuzzy set B denoted by AqB if and only if there exist $x \in X$ such that A(x)+B(x)>1. $A \le B$ if and only if AqB^C .

Let $f: X \to Y$ be a mapping. If A is a fuzzy set of X, then f(A) is a fuzzy set of X defined by

$$\begin{aligned} sup A(x) \ , \ x \in & f^{-1}(y) \ \ if \ \ f^{-1}(y) \neq \phi \\ f(A)(y) = & \\ 0 & \text{otherwise} \end{aligned}$$

If B is a fuzzy set of Y, then $f^{-1}(B)$ is a fuzzy set of X defined by $f^{-1}(B)(x) = B(f(x))$, for each x

 \in X.A family τ of fuzzy sets of X is called a fuzzy topology on X .if 0 and I belongs to τ and τ is closed with respect to arbitrary union and finite intersection. The members of τ are called fuzzy open sets and their complements are fuzzy closed sets. For a fuzzy set A, the closure of A (denoted by cl(A)) is the intersection of all fuzzy closed super sets of A and the interior of A (denoted by int(A)) is the union of all fuzzy open subsets of A. A fuzzy set A of a fuzzy topological space (X, τ) is called fuzzy generalized closed (fuzzy g-closed) if $cl(A) \leq G$

whenever $A \leq G$ and G is fuzzy open .The complement of a fuzzy g-closed set is called fuzzy g- open ii A^C is fuzzy g-closed . Every fuzzy closed (resp. fuzzy open) set is fuzzy g-closed (resp. fuzzy g-open) but its converse may not be true.

Definition 2.1. Let (X,τ) be a fuzzy topological space. A subset A of the space X is said to be

- 1. Fuzzy semi open if $A \le int(cl(A))$ and fuzzy pre closed if $cl(int(A)) \le A$.
- 2. Fuzzy semi open if $A \le cl(int(A))$ and fuzzy semi closed if $int(cl(A)) \le A$.
- 3. Fuzzy Regular open if A = int(cl(A)) and fuzzy Regular closed if A = cl(int(A)).

Definition 2.2.Let (X,τ) be a fuzzy topological space . A subset $A\subseteq X$ is said to be

Vol. No.4, Issue No. 06, June 2016

www.ijates.com

ISSN 2348 - 7550

- 1. fuzzy g-closed if $cl(A) \le U$ whenever $A \le U$ and U is fuzzy open in X.
- 2. fuzzy ω -closed if $cl(A) \le U$ whenever $A \le U$ and U is fuzzy Semi open in X.
- 3. fuzzy D-closed if $pcl(A) \leq Int(U)$ whenever $A \leq U$ and U is fuzzy ω -open in X. The complements of above mentioned sets are called their respective fuzzy open sets.

Definition 2.3. A function $f:(X,\tau) \to (Y,\sigma)$ is called

- 1. fuzzy g-continuous if $f^{-1}(V)$ is fuzzy g-closed in (X,τ) for every fuzzy closed set V in (Y,σ) .
- 2. fuzzy ω -continuous if f⁻¹(V) is fuzzy ω -closed in (X, τ) for every fuzzy closed set V in (Y, σ).
- 3. fuzzy Perfectly continuous if $f^{-1}(V)$ is fuzzy clopen in (X,τ) for every fuzzy open set V in (Y,σ) .
- 4. fuzzy D-continuous if $f^{-1}(V)$ is fuzzy D-closed in (X,τ) for every fuzzy closed set V in (Y,σ) .
- 5. fuzzy D-irresolute if $f^{-1}(V)$ is fuzzy D-closed in (X,τ) for every fuzzy D-closed set V in (Y,σ) .
- 6. fuzzy strongly D-continuous if f 1(V) is fuzzy closed in (X,τ) for every fuzzy D-closed set V in (Y,σ) .
- 7. fuzzy Pre-D-continuous if $f^{-1}(V)$ is fuzzy D- closed in (X,τ) for every fuzzy pre-closed set V in (Y,σ) .
- 8. fuzzy Perfectly D-continuous if $f^{-1}(V)$ is fuzzy clopen in (X,τ) for every fuzzy D-closed set V in (Y,σ) .
- 9. fuzzy Super continuous if $f^{-1}(V)$ is fuzzy Regular open in (X,τ) for every fuzzy open set V in (Y,σ) .
- 10. Fuzzy contra-continuous if f⁻¹(V) is fuzzy closed in (X,τ) for every fuzzy open set V in (Y,σ) .
- 11. Fuzzy contra pre-continuous if $f^{-1}(V)$ is fuzzy pre closed in (X,τ) for every fuzzy open set V in (Y,σ) .
- 12. Fuzzy contra g-continuous if $f^{-1}(V)$ is fuzzy g-closed in (X,τ) for every open set V in (Y,σ) .
- 13. Fuzzy contra semi-continuous if $f^{-1}(V)$ is fuzzy semi closed in (X,τ) for every fuzzy open set V in (Y,σ) .
- 14. RC-continuous if $f^{-1}(V)$ is fuzzy Regular closed in (X,τ) for every fuzzy open set V in (Y,σ) .
- 15. D-open if f(V) is fuzzy D-open in (Y,σ) for every fuzzy D-open set V in (X,τ) .

Definition 2.4. A space (X,τ) is called;

- 1. A T_{1/2} space if every fuzzy g-closed set is fuzzy closed.ω Space if every fuzzy ω-closed set is fuzzy closed.
- 3. A fuzzy D-T_S space if every fuzzy D-closed set is fuzzy closed.
- 4. A fuzzy D-T_{1/2} space if every fuzzy D-closed set is fuzzy pre closed.

Theorem 2.5 Let (X,τ) be a fuzzy topological space.

- 1. A subset A of (X,τ) is fuzzy Regular open if and only if A is fuzzy open and fuzzy D-closed.
- 2. A subset A of (X,τ) is fuzzy open and fuzzy Regular closed then A is fuzzy D-closed.

Theorem 2.6 Every fuzzy closed set in a fuzzy topological space (X,τ) is fuzzy D-closed.

Vol. No.4, Issue No. 06, June 2016

www.ijates.com

ijatesISSN 2348 - 7550

III FUZZY CONTRA-D-CONTINUOUS FUNCTIONS

Definition 3.1:A function $f:(X,\tau) \to (Y,\sigma)$ is called fuzzy contra-D-continuous if $f^{-1}(V)$ is fuzzy D-open (resp. fuzzy D-closed) in (X,τ) for every fuzzy closed (resp. fuzzy open) set V in (Y,σ) .

Definition 3.2:Let A be a subset of a fuzzy topological space (X, τ) . The set $\cap \{U_{\tau} \in /A < U\}$ is called the kernel of A [19] and is denoted by Ker(A).

Lemma 3.4: The following properties hold for subsets A, B of a fuzzy space X:

- 1. $x \in Ker(A)$ if and only if $A \cap F \phi \neq for$ any $F \in C(X, x)$.
- 2. A < Ker(A) and A = Ker(A) if A is fuzzy open in X.
- 3. If A < B then Ker(A) < Ker(B)

Theorem 3.1: Every fuzzy contra-continuous function is a fuzzy contra-D-continuous function. Proof: Let f:

 $(X,\tau) \to (Y,\sigma)$ be a fuzzy function. Let V be a fuzzy open set in (Y,σ) . Since f is fuzzy contra-continuous, $f^{-1}(V)$ is fuzzy closed in (X,τ) . Hence by $f^{-1}(V)$ is fuzzy D-closed in (X,τ) . Thus f is a fuzzy contra-D-continuous function. Converse of this theorem need not be true.

Remark 3.1: Fuzzy contra-D-continuous and fuzzy contra-g-continuous (resp. fuzzy contra-continuous, fuzzy contra-D-continuous, fuzzy contra semi-continuous) are independent concepts.

Remark 3.2: The composition of two fuzzy contra D-continuous functions need not be fuzzy contra D-continuous.

Theorem 3.2: The following are equivalent for a fuzzy function $f:(X,\tau)\to (Y,\sigma)$: Assume that FDO(X) (resp. FDC(X)) is closed under any union (resp. intersection)

- 1. f is fuzzy contra-D-continuous
- 2. The inverse image of a fuzzy closed set V of Y is fuzzy D-open
- 3. For each $x \in X$ and each $V \in C(Y, f(x))$, there exists $U \in DO(X, x)$ such that $f(U) \subseteq V$.
- 4. $f(D-cl(A)) \le Ker(f(A))$ for every subset A of X.
- 5. $D\text{-cl}(f^{-1}(B)) \le f^{-1}$ (Ker (B)) for every subset B of Y.

Proof The implications $(1) \Rightarrow (2)$, $(2) \Rightarrow (3)$ are obvious.

- (3) \Rightarrow (2) Let V be any fuzzy closed set of Y and $x \in f^{-1}(V)$ (V). Then $f(x) \in V$ and there exists $U \in DO(X, x)$ such that $f(U_X) \subset V$. Hence we obtain $f^{-1}(V)$ (V) $= \bigcup \{U_X : x \in f^{-1}(V) \ (V)\}$ assumption $f^{-1}(V)$ is fuzzy D open.
- $(2) \Rightarrow (4)$ Let A be any subset of X. Suppose that $y \notin Ker(f(A))$. Then by Lemma 3.4, there exists $V \in C(X, x)$ such that $f(A) \cap V = \emptyset$. Thus we have $A \cap f 1(V) = \emptyset$ and $D cl(A) \cap f 1(V) = \emptyset$. Hence we obtain $f(D cl(A)) \cap V = \emptyset$ and $y \notin f(D cl(A))$. Thus $f(D cl(A)) \leq Ker(f(A))$.
- (4) \Rightarrow (5): Let B be any subset of Y. By (4) and $f(D\text{-}cl(f^{-1}(B))) < Ker(f(f^{-1}(B))) < ker(B)$ and $D\text{-}cl(f^{-1}(B)) < f 1(Ker(B))$.

Vol. No.4, Issue No. 06, June 2016

www.ijates.com

ijates ISSN 2348 - 7550

(5) \Rightarrow (1) :Let U be any fuzzy open set of Y. Then we have D-cl(f⁻¹(U)) < f⁻¹(Ker(U)) = f⁻¹(U) and D-cl(f⁻¹(U)) = f⁻¹(U). By assumption, f⁻¹(U) is fuzzy D-closed in X. Hence f is fuzzy contra-D-continuous.

Theorem 3.3:If $f:(X, \tau) \to (Y, \sigma)$ is fuzzy D-irresolute (resp. fuzzy contra-D-continuous) and $g:(Y, \sigma) \to (Z, \eta)$ in fuzzy contra-D-continuous (resp. fuzzy continuous) then their composition $gof:(X,\tau) \to (Z, \eta)$ is fuzzy contra-D-continuous.

Proof:Let U be any fuzzy open set in (Z, η) . Since g is fuzzy contra-D-continuous (resp. fuzzy continuous) then $g^{-1}(V)$ is fuzzy D-closed (resp. fuzzy open) in (Y, σ) and since f is fuzzy D- irresolute (resp. fuzzy contra D-continuous) then $f^{-1}(g^{-1}(V))$ is D-closed in (X, τ) . Hence gof is fuzzy contra-D-continuous.

Theorem 3.4If $f:(X,\tau)\to (Y,\sigma)$ is fuzzy contra-continuous and $g:(Y,\sigma)\to (Z,\eta)$ is fuzzy continuous then their composition $gof:(X,\tau)\to (Z,\eta)$ is fuzzy contra-D-continuous. **Proof:**Let U be any fuzzy open set in (Z,η) .Since g is fuzzy continuous, $g^{-1}(U)$ is fuzzy open in (Y,σ) .Since f is fuzzy contra-continuous, $f^{-1}(g^{-1}(U))$ is fuzzy closed in (X,τ) .Hence by theorem 2.6, $(gof)^{-1}(U)$ is D-closed in (X,τ) .Hence gof is fuzzy contra-D-continuous.

Theorem 3.5:If $f:(X, \tau) \to (Y, \sigma)$ is fuzzy contra-continuous and fuzzy super-continuous and $g:(Y, \sigma) \to (Z, \eta)$ is fuzzy contra-continuous then their composition gof: $(X, \tau) \to (Z, \eta)$ is fuzzy contra-D-continuous.

Proof:Let U be any fuzzy open set in (Z, η) .Since g is fuzzy contra-continuous, $g^{-1}(U)$ is fuzzy closed in (Y, σ) and since f is fuzzy contra-continuous and super-continuous then $f^{-1}(g^{-1}(U))$ is both fuzzy open and fuzzy Regular closed in (X, τ) . Then $(gof)^{-1}(U)$ is fuzzy D-closed in (X, τ) . Hence gof is fuzzy contra-D-continuous.

Theorem 3.7:Let (X,τ) , (Y,σ) be any fuzzy topological spaces and (Y,σ) be fuzzy $T_{1/2}$ space (resp. fuzzy T_{ω} - space). Then the composition gof: $(X,\tau) \to (Z,\eta)$ of fuzzy contra-D-continuous function $f:(X,\tau) \to (Y,\sigma)$ and the fuzzy g-continuous (resp. fuzzy ω -continuous) function $g:(Y,\sigma) \to (Z,\eta)$ is fuzzy contra-D-continuous.

Proof:Let V be any fuzzy closed set in (Z, η) . Since g is fuzzy g-continuous (resp. fuzzy ω - continuous), $g^{-1}(V)$ is fuzzy g-closed (resp. fuzzy ω -closed) in (Y, σ) and (Y, σ) is fuzzy $T_{1/2}$ space (resp. fuzzy $T\omega$ -space), hence $g^{-1}(V)$ is fuzzy closed in (Y, σ) . Since f is fuzzy contra-D- continuous, $f^{-1}(g^{-1}(V))$ is fuzzy D-open in (X, τ) . Hence gof is fuzzy contra-D-continuous. **Theorem 3.8**: If $f: (X, \tau) \to (Y, \sigma)$ is a surjective fuzzy D-open function and $g: (Y, \sigma) \to (Z, \eta)$

is a function such that gof: $(X, \tau) \to (Z, \eta)$ is fuzzy contra-D-continuous then g is fuzzy contra-D-continuous.

Vol. No.4, Issue No. 06, June 2016

www.ijates.com

ijates ISSN 2348 - 7550

Proof:Let V be any fuzzy closed subset of (Z, η) . Since gof is fuzzy contra-D-continuous then $(gof)^{-1}(V) = f^{-1}(g^{-1}(V))$ is fuzzy D-open in (X, τ) and since f is surjective and fuzzy D-open, then $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is D-open in (Y, σ) . Hence g is fuzzy contra-D-continuous. **Theorem 3.9:**If $f: (X, \tau) \to (Y, \sigma)$ is strongly D-continuous and $g: (Y, \sigma) \to (Z, \eta)$ is fuzzy contra-D-continuous then gof : $(X, \tau) \to (Z, \eta)$ is fuzzy contra-continuous. **Proof:** Let U be any open set in (Z, η) . Since g is fuzzy contra-D-continuous, then $g^{-1}(U)$ is D-closed in (Y, σ) . Since f is fuzzy strongly D-continuous, then $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$ is closed in (X, τ) . Hence gof is fuzzy contra-continuous.

Theorem 3.10:If $f:(X, \tau) \to (Y, \sigma)$ is fuzzy pre-D-continuous and $g:(Y, \sigma) \to (Z, \eta)$ is fuzzy contra-pre-continuous then gof : $(X, \tau) \to (Z, \eta)$ is fuzzy contra-D-continuous.

Proof: Let U be any fuzzy open set in (Z, η) . Since g is fuzzy contra-pre-continuous, then $g^{-1}(U)$ is fuzzy pre-closed in (Y, σ) and since f is fuzzy pre-D-continuous, then $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$ is fuzzy D-closed in (X, τ) . Hence gof is fuzzy contra-D-continuous. **Theorem 3.11:**If $f: (X, \tau) \to (Y, \sigma)$ is strongly-D-continuous and $g: (Y, \sigma) \to (Z, \eta)$ is fuzzy contra-D-continuous then gof: $(X, \tau) \to (Z, \eta)$ is fuzzy contra-D-continuous.

Proof: Let U be any fuzzy open set in (Z, η) . Since g is fuzzy contra-D-continuous, then $g^{-1}(U)$ is fuzzy D-closed in (Y, σ) and since f is fuzzy strongly-D-continuous, then $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$ is fuzzy closed in (X, τ) . then $(gof)^{-1}(U)$ is fuzzy D-closed in (X, τ) . Hence gof is fuzzy contra-D-continuous.

Theorem 3.12:Let $f:(X,\tau)\to (Y,\sigma)$ be surjective fuzzy D-irresolute and fuzzy D-open and $g:(Y,\sigma)\to (Z,\eta)$ be any function. Then $gof:(X,\tau)\to (Z,\eta)$ is fuzzy contra-D-continuous if and only if g is fuzzy contra-D-continuous.

Proof: The 'if' part is easy to prove. To prove the 'only if' part, let V be any fuzzy closed set in (Z, η) . Since gof is fuzzy contra-D-continuous, then $(gof)^{-1}(V)$ is D-open in (X, τ) and since f is fuzzy D-open surjection, then $f((gof)^{-1}(V)) = g^{-1}(V)$ is fuzzy D-open in (Y, σ) . Hence g is fuzzy contra-D-continuous.

Theorem 3.13:Let $f:(X,\tau)\to (Y,\sigma)$ be a fuzzy function and $g:X\to X\times Y$ the fuzzy graph function given by g(x)=(x,f(x)) for every $x\in X$. Then f is fuzzy contra-D-continuous if g is fuzzy contra-D-continuous.

Proof:Let V be a closed subset of Y. Then $X \times V$ is a closed subset of $X \times Y$. Since g is fuzzy contra-D-continuous, then $g^{-1}(X \times V)$ is a fuzzy D-open subset of X. Also $g^{-1}(X \times V) = f^{-1}(V)$. Hence f is fuzzy contra-D-continuous.

Theorem 3.14: If a function $f:(X, \tau) \to (Y, \sigma)$ is fuzzy contra-D-continuous and Y is fuzzy Regular,

Vol. No.4, Issue No. 06, June 2016 www.ijates.com

ijatesISSN 2348 - 7550

then f is fuzzy D-continuous.

Proof: Let x be an arbitrary point of X and N be a fuzzy open set of Y containing f(x). Since Y is fuzzy Regular, there exists an open set U in Y containing f(x) such that $cl(U) \subseteq N$. Since f is fuzzy contra-D-continuous, then there exists $W \in DO(X, x)$ such that $f(W) \subseteq cl(U)$. Then $f(W) \subseteq N$. Hence by f is D-continuous.

Theorem 3.15: Every continuous and fuzzy RC-continuous function is fuzzy contra-D- continuous. **Proof:** Let $f:(X,\tau)\to (Y,\sigma)$ be a function. Let U be an fuzzy open set in (Y,σ) . Since f is fuzzy continuous and fuzzy RC continuous, $f^{-1}(U)$ is fuzzy open and fuzzy Regular closed in (X,τ) . Hence f is fuzzy contra-D-continuous.

Theorem 3.16: Every continuous and fuzzy contra-D-continuous (resp. fuzzy contra-continuous and fuzzy D-continuous) function is a fuzzy super-continuous (resp. fuzzy RC-continuous) function.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ be a fuzzy function. Let U be an fuzzy open (resp. fuzzy closed) set in (Y, σ) . Since f is fuzzy continuous and fuzzy contra-D-continuous (resp. fuzzy contra- continuous and fuzzy D-continuous), $f^{-1}(U)$ is fuzzy open and fuzzy D-closed in (X, τ) , then $f^{-1}(U)$ is fuzzy Regular open in (X, τ) . This shows that f is a fuzzy super continuous (resp. fuzzy RC-continuous) function.

Theorem 3.17:Let $f:(X, \tau) \to (Y, \sigma)$ be a fuzzy function and X a fuzzy D-T_S space. Then the following are equivalent.

- 1. f is fuzzy contra-D-continuous.
- 2. 2. f is fuzzy contra-continuous

Proof:(1) \Rightarrow (2).:Let U be an open set in (Y, σ) . Since f is fuzzy contra-D-continuous, $f^{-1}(U)$ is D-closed in (X, τ) and since X is fuzzy D-Ts space, $f^{-1}(U)$ is closed in (X, τ) . Hence f is fuzzy contra continuous. (2) \Rightarrow (1).:Let U be an open set in (Y, σ) . Since f is fuzzy contra-continuous, $f^{-1}(U)$ is fuzzy closed in (X, τ) . Hence $f^{-1}(U)$ is fuzzy D-closed in (X, τ) . Hence f is fuzzy contra-D-continuous.

IV FUZZY CONTRA-D-CLOSED AND STRONGLY D-CLOSED

Definition 4.1: The graph G(f) of a fuzzy function $f:(X,\tau)\to (Y,\sigma)$ is said to be fuzzy contra- D-closed in $X\times Y$ if for each $(x,y)\in (X\times Y)-G(f)$ there exist $U\in FDO(X,x)$ and $V\in C(Y,y)$ such that $(U\times V)\cap G(f)=\phi$.

Vol. No.4, Issue No. 06, June 2016

www.ijates.com

ijates

Lemma 4.1: The graph G(f) of a fuzzy function $f:(X, \tau) \to (Y, \sigma)$ is fuzzy contra-D-closed if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exists $U \in FDO(X, x)$ and $V \in C(Y, y)$ such that $f(U) \cap V = \phi$.

Theorem 4.1:If $f:(X, \tau) \to (Y, \sigma)$ is fuzzy contra-D-continuous and Y is Urysohn then G(f) is fuzzy contra-D-closed in $X \times Y$.

Proof :Let $(x, y) \in X \times Y - G(f)$. Then $y \neq f(x)$ and there exist fuzzy open sets V, W such that $f(x) \in V$, $y \in W$ and $cl(V) \cap cl(W) = \phi$. Since f is fuzzy contra-D-continuous and by theorem

3.12 there exists $U \in DO(X, x)$ such that $f(U) \le V$. Hence $f(U) \cap cl(W) = \phi$. Thus G(f) is fuzzy contra D-closed in $X \times Y$.

Definition 4.2: A topological space (X,τ) is said to be

- 1. fuzzy Strongly S-closed if every fuzzy closed cover of X has a finite sub cover.
- 2. fuzzy S-closed if every fuzzy Regular closed cover of X has a finite sub cover.
- 3. Strongly compact if every fuzzy Semi open cover of X has a finite sub cover.
- 4. fuzzy Locally indiscrete if every fuzzy open set of X is fuzzy closed in X.
- 5. fuzzy Midly Hausdorff if the fuzzy δ -closed sets form a network for its fuzzy topology τ , where a fuzzy δ -closed set is the intersection of fuzzy Regular closed sets.
- 6. fuzzy Ultra normal if each pair of non-empty disjoint fuzzy closed sets can be separated by disjoint fuzzy clopen sets
- 7. fuzzy Nearly compact if every fuzzy Regular open cover of X has a finite sub cover.
- 8. fuzzy D-compact if every fuzzy D-open cover of X has a finite sub cover.
- 9. fuzzy D-connected if X cannot be written as the disjoint union of two non-empty fuzzy D- open Sets.

Definition 4.3: A fuzzy topological space (X,τ) is said to be fuzzy strongly D-closed if every fuzzy D-closed cover of X has a finite sub cover.

Theorem 4.2:Let (X, τ) be D-T_S space. If $f: (X, \tau) \to (Y, \sigma)$ has a fuzzy contra-D-closed graph, then the inverse image of a fuzzy strongly S-closed set K of Y is fuzzy closed in (X, τ) .

Proof:Let K be a fuzzy strongly S-closed set of Y and $x \in f^{-1}(K)$. For each $k \in K$, $(x, k) \notin G(f)$. then there exist $U_k \in DO(X, x)$ and $V_k \in C(Y, k)$ such that $f(U_k) \cap V_k = \phi$. Since $\{K \cap V_k : k \in K\}$ is a closed cover of the fuzzy subspace K, there exists a finite subset $K_0 < K$ such that $K < \cup \{V_k : k \in K_0\}$. Set $U = \cap \{U_k : k \in K_0\}$.

Then U is fuzzy open, since X is a fuzzy D-Ts space . Therefore $f(U) \cap K = \phi$ and $U \cap f^{-1}(K) = \phi$. This shows that $f^{-1}(K)$ is fuzzy closed in (X, τ) .

Vol. No.4, Issue No. 06, June 2016

www.ijates.com

ijates

Theorem 4.3:If a fuzzy space (X,τ) is fuzzy strongly D-closed then the space is fuzzy strongly S-closed.

Proof: obvious.

Theorem 4.4:Let $f:(X, \tau) \to (Y, \sigma)$ be a fuzzy contra-D-continuous and fuzzy pre-closed surjection. If (X, τ) is a fuzzy D-Ts, then (X, τ) is a fuzzy locally indiscrete space.

Proof:Let U be any fuzzy open set in (Y, σ) . Since f is fuzzy contra-D-continuous and (X, τ) is a fuzzy D-T_S space, $f^{-1}(U)$ is fuzzy closed in (X, τ) . Since f is a fuzzy pre-closed surjection, then U is fuzzy pre-closed in (Y, σ) . Therefore cl(U) = cl (int(U)) < U. Hence U is fuzzy closed in (Y, σ) .

 σ). Thus (Y, σ) is a fuzzy locally indiscrete space.

Theorem 4.5:If every fuzzy closed subset of a space X is fuzzy D-open then the following are equivalent.

- 1. X is fuzzy S-closed
- 2. X is fuzzy strongly S-closed

Proof:(1) \Rightarrow (2):Let $\{V_{\alpha} : \alpha \in I\}$ be a fuzzy closed cover of X then $\{V_{\alpha} : \alpha \in I\}$ is a fuzzy Regular closed cover of

X. Since X is fuzzy S-closed, then we have a finite sub cover of X. Hence X is fuzzy strongly S-closed.

(2) \Rightarrow (1):Let $\{V_{\alpha}: \alpha \in I\}$ be a fuzzy Regular closed cover of X. Since every fuzzy Regular closed is fuzzy closed and X is fuzzy strongly S-closed, then we have a finite sub cover of X. Hence X is fuzzy S-closed.

Definition 4.4:A fuzzy topological space (X, τ) is said to be;

- 1. Fuzzy D-Hausdorff if for each pair of distinct points x and y in X there exist disjoint fuzzy D-open sets U and V of x and y respectively.
- 2. Fuzzy D-Ultra Hausdorff if for each pair of distinct points x and y in X there exist disjoint fuzzy D-clopen sets U and V of x and y respectively.

Theorem 4.6: If $f:(X, \tau) \to (Y, \sigma)$ is fuzzy contra-D-continuous injection, where Y is Urysohn then the topological space (X, τ) is a D-Hausdorff.

Proof :Let x_1 and x_2 be two distinct points of (X, τ) . Suppose $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is injective and $x_1 \neq x_2$ then $y_1 \neq y_2$. Since the space Y is Urysohn, there exist fuzzy open sets V and W such that $y_1 \in V, y_2 \in W$ and $cl(V) \cap cl(W) = \phi$. Since f is fuzzy contra-D-continuous and, there exist fuzzy D-open sets $Ux_1 \in FDO(X, x_1)$ and $Ux_2 \in FDO(X, x_2)$ such that $f(Ux_1) < cl(V)$ and $f(Ux_2) < cl(W)$. Thus we have $Ux_1 \cap Ux_2 = \phi$, since $cl(V) \cap cl(W) = \phi$. Hence X is a fuzzy D- Hausdorff.

Theorem 4.7: If $f:(X,\tau)\to (Y,\sigma)$ is a fuzzy contra-D-continuous injection, where Y is fuzzy D- ultra Hausdorff then the fuzzy topological space (X,τ) is fuzzy D-Hausdorff. **Proof**Let x_1 and x_2 be two distinct points of (X,τ) . Since f is injective and Y is fuzzy D-ultra Hausdorff, then $f(x_1)\neq f(x_2)$ and also there exist fuzzy clopen sets U and W of Y such that $f(x_1)\in U$ and $f(x_2)\in W$, where $U\cap W=\phi$. Since f is fuzzy contra-D-continuous, x_1 and x_2 belong to fuzzy D-open sets $f^{-1}(U)$ and $f^{-1}(W)$ respectively, where $f^{-1}(U)\cap f^{-1}(W)=\phi$. Hence X is D- Hausdorff.

Lemma 4.15: Every fuzzy mildly Hausdorff strongly S-closed space is fuzzy locally indiscrete. Theorem

Vol. No.4, Issue No. 06, June 2016

www.ijates.com

1jates ISSN 2348 - 7550

4.8: If a fuzzy function $f:(X, \tau) \to (Y, \sigma)$ is fuzzy continuous and (X, τ) is a fuzzy locally indiscrete continuous. **Proof:** Let U be any fuzzy open set in (Y, space, then f is contra-D fuzzy σ). Since f is fuzzy continuous, f⁻¹(U) is fuzzy open in (X, τ) and since (X, τ) is fuzzy locally indiscrete, f $^{-1}$ (U) is fuzzy closed in (X, τ). Hence by theorem 2.6, f $^{-1}$ (U) is fuzzy D-closed in (X, τ). Thus f is fuzzy contra-D-continuous. Lemma 4.2: If a function $f:(X, \tau) \to (Y, \sigma)$ is fuzzy continuous and (X, τ) is fuzzy mildly Hausdorff strongly S-closed space then fuzzy contra-Dcontinuous.

Proof: Obvious.

Definition 4.5:A topological space (X, τ) is said to be fuzzy D-normal if each pair of non-empty disjoint closed sets can be separated by disjoint fuzzy D-open sets.

Theorem 4.10:If $f:(X, \tau) \to (Y, \sigma)$ is a closed fuzzy contra-D-continuous injection and Y is fuzzy ultranormal, then X is fuzzy D normal.

Proof:Let V₁ and V₂ be non-empty disjoint fuzzy closed subsets of X. Since f is fuzzy closed and injective, then $f(V_1)$ and $f(V_2)$ are non-empty disjoint fuzzy closed subsets of Y. Since Y is fuzzy ultra-normal, then $f(V_1)$ and $f(V_2)$ can be separated by disjoint fuzzy clopen sets W₁ and W₂ respectively. Hence V₁ \subset f⁻¹(W₁) and V₂ \subset f⁻¹(W₁). Since f is fuzzy contra-D-continuous, then f⁻¹(W₁) and f⁻¹(W₂) are fuzzy D-open subsets of X and f⁻¹(W₁) \cap f⁻¹(W₂) = ϕ . Hence X is fuzzy D-normal.

Theorem 4.11: The image of a fuzzy strongly D-closed space under a fuzzy contra-D-continuous surjective function is fuzzy compact.

Proof: Suppose that $f:(X,\tau)\to (Y,\sigma)$ is a fuzzy contra-D-continuous surjection. Let $\{V_\alpha:\alpha\in I\}$ be any fuzzy open cover of Y. Since f is fuzzy contra-D-continuous, then $\{f^{-1}(V_\alpha):\alpha\in I\}$ is a fuzzy D-closed cover of X. Since X is fuzzy strongly D-closed, then there exists a finite subset I0 of I such that $X=\cup\{f^{-1}(V_\alpha):\alpha\in I0\}$. Thus we have $Y=\cup\{V_\alpha:\alpha\in I0\}$. Hence Y is fuzzy compact.

Theorem 4.12: Every fuzzy strongly D-closed space (X, τ) is a fuzzy compact S-closed space. **Proof:** Let $\{V\alpha : \in \alpha \mid I\}$ be a cover of X such that for every $\alpha \in I$, $V\alpha$ is fuzzy open and fuzzy Regular closed due to assumption. Then each $V\alpha$ is fuzzy D-closed in X. Since X is fuzzy strongly D-closed, there exists a finite subset I0 of I such that $X = \bigcup \{V\alpha : \alpha \in I0\}$. Hence (X, τ) is a fuzzy compact S-closed space.

Theorem 4.13: The image of a fuzzy D-compact space under a fuzzy contra-D-continuous surjective function is

Vol. No.4, Issue No. 06, June 2016

www.ijates.com

ijates ISSN 2348 - 7550

fuzzy strongly S-closed.

Proof: Suppose that $f:(X, \tau) \to (Y, \sigma)$ is a fuzzy contra-D-continuous surjection .Let $\{V\alpha : \alpha \in I\}$ be any closed cover of Y. Since f is fuzzy contra-D-continuous, then $\{f^{-1}(V\alpha) : \in \alpha I\}$ is a D- open cover of X. Since X is fuzzy D-compact, there exists a finite subset I0 of I such that X = I

 \cup {f⁻¹(V_{Ω}) / \in α I0}. Thus we have Y = \cup {V_{Ω} : α \in I0}. Hence Y is fuzzy strongly S-closed. **Theorem 4.14:** The image of a fuzzy D-compact space in any D-Ts space under a fuzzy contra-D-continuous surjective function is fuzzy strongly D-closed.

Proof: Suppose that $f:(X,\tau)\to (Y,\sigma)$ is a fuzzy contra-D-continuous surjection. Let $\{V_{\alpha} / \in \alpha I\}$ be any fuzzy D-closed cover of Y. Since Y is fuzzy D-Ts space, then $\{V_{\alpha} : \alpha \in I\}$ is a fuzzy closed cover of Y. Since f is fuzzy contra-D-continuous, then $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a fuzzy D-open cover of X. Since X is fuzzy D-compact, there exists a finite subset I0 of I such that $X = \bigcup \{f$

 $^{-1}(V_{\alpha}):\alpha\in I0\}. \ Thus \ we \ have \ Y=\cup\{V_{\alpha}:\alpha\in I0\}. \ Hence \ Y \ is \ fuzzy \ strongly \ D\text{-closed}.$

Theorem 4.15: The image of fuzzy strongly D-closed space under a fuzzy D-irresolute surjective function is fuzzy strongly D-closed.

Proof: Suppose that $f:(X,\tau)\to (Y,\sigma)$ is an fuzzy D-irresolute surjection. Let $\{V_{\alpha}\/ \in \alpha\ I\}$ be any fuzzy D-closed cover of Y. Since f is fuzzy D-irresolute then $\{f^{-1}(V_{\alpha}):\alpha\in I\}$ is a fuzzy D-closed cover of X. Since X is fuzzy strongly D-closed, then there exists a finite subset I_0 of I such that $X=\cup\{f^{-1}(V_{\alpha}):\alpha\in I_0\}$. Thus, we have $Y=\cup\{V_{\alpha}:\alpha\in I_0\}$. Hence Y is fuzzy strongly D-closed.

Lemma 4.3: The product of two fuzzy D-open sets is fuzzy D-open.

Theorem 4.16:Let $f:(X_1, \tau) \to (Y, \sigma)$ and $g:(X_2, \tau) \to (Y, \sigma)$ be two fuzzy functions where Y is a fuzzy Urysohn space and f and g are fuzzy contra-D-continuous function. Then $\{(x_1, x_2): f(x_1) = g(x_2)\}$ is fuzzy D-closed in the product space $X_1 \times X_2$.

Proof:Let V denote the set $\{(x_1,x_2): f(x_1)=g(x_2)\}$. In order to show that V is fuzzy D-closed, we show that $(X_1 \times X_2) - V$ is fuzzy D-open. Let $(x_1,x_2) \notin V$. Then $f(x_1) \neq g(x_2)$. Since Y is Urysohn, there exist fuzzy open sets U1 and U2 $f(x_1)$ and $g(x_2)$ such that $cl(U_1) \cap cl(U_2) = \emptyset$. Since f and g are fuzzy contra-D-continuous, f -1 (cl(U1)) and g^{-1} (cl(U2)) are fuzzy D-open sets containing x_1 and x_2 in x_1 and x_2 . Hence f^{-1} (cl(U1)) $\times g^{-1}$ (cl(U2)) is fuzzy D-open. Further $(x_1,x_2) \in f^{-1}$ (cl(U1)) $\times g^{-1}$ (cl(U2)) $\subset ((X_1 \times X_2) - V)$. If follows that $((X_1 \times X_2) - V)$ is fuzzy D-open. Thus V is fuzzy D closed in the product space $X_1 \times X_2$.

Lemma 4.4: If $f:(X, \tau) \to (Y, \sigma)$ is fuzzy contra-D-continuous and Y is a fuzzy Urysohn space, then $V = \{(x_1, x_2) / f(x_1) = f(x_2)\}$ is fuzzy D-closed in the product space $X_1 \times X_2$.

Theorem 4.17:Let $f:(X, \tau) \to (Y, \sigma)$ be a fuzzy continuous function. Then f is fuzzy RC- continuous if and only if it is fuzzy contra-D continuous.

Proof: Suppose that f is fuzzy RC-continuous. Since every fuzzy RC-continuous function is fuzzy contracontinuous, Therefore f is fuzzy contra D-continuous. Conversely, Let V be any fuzzy open set in (Y, σ) . Since f is fuzzy continuous and fuzzy contra-D-continuous, $f^{-1}(V)$ is fuzzy open and fuzzy D-closed in (X, τ) then

Vol. No.4, Issue No. 06, June 2016

www.ijates.com

ijatesISSN 2348 - 7550

 $f^{-1}(V)$ is fuzzy Regular open in (X, τ) . That is, $\operatorname{int}(\operatorname{cl}(f^{-1}(V))) = f^{-1}(V)$. Since $f^{-1}(V)$ is fuzzy open, $\operatorname{int}(\operatorname{cl}(f^{-1}(V))) = \operatorname{int}(f^{-1}(V))$ and so $\operatorname{cl}(\operatorname{int}(f^{-1}(V))) = f^{-1}(V)$. Therefore V is fuzzy Regular closed in (X, τ) . Hence f is fuzzy RC-continuous.

Theorem 4.18:Let $f:(X, \tau) \to (Y, \sigma)$ be fuzzy perfectly D-continuous function, X be fuzzy locally indiscrete space and connected. Then Y has a fuzzy indiscrete topology.

Proof:Suppose that there exists a proper fuzzy open set U of Y. Since Y is locally indiscrete, U is a fuzzy closed set of Y. Therefore U is a fuzzy D-closed set of Y. Since f is fuzzy perfectly D-continuous, $f^{-1}(U)$ is a proper fuzzy clopen set of X. This shows that X is not fuzzy connected. Which is a fuzzy contradiction. Therefore Y has an indiscrete fuzzy topology.

Theorem 4.19:Let $f:(X, \tau) \to (Y, \sigma)$ be a fuzzy contra-D-continuous function. Let A be a fuzzy open fuzzy D-closed subset of X and let B be an fuzzy open subset of Y. Assume that $DC(X, \tau)$ (the class of all fuzzy D-closed sets of (X, τ)) be fuzzy D-closed under finite intersections. Then, the restriction $f \mid A:(A, \tau A) \to (B, \sigma B)$ is a fuzzy contra-D-continuous function.

Proof:Let V be an fuzzy open set in $(B, \sigma B)$. Then $V = B \cap K$ for some fuzzy open set K in (Y, σ) . Since B is an fuzzy open set of Y, V is an fuzzy open set in (Y, σ) . By hypothesis $f^{-1}(V) \cap A = H_1$ (say) is a fuzzy D-closed set in (X, τ) . Since $(f|A)^{-1}(V) = H_1$, it is sufficient to show that H_1 is a fuzzy D-closed set in $(A, \tau A)$. Let G_1 be fuzzy ω -open in $(A, \tau A)$ such that $H_1 \subseteq G_1$. Then by hypothesis and G_1 is fuzzy ω -open in (X, τ) . Since H_1 is a fuzzy D-closed set in (X, τ) , we have $\operatorname{pcl}X(H_1) \leq \operatorname{int}(G_1)$. Since A is fuzzy open and $\operatorname{pcl}A(H_1) = \operatorname{pcl}(X(H_1)) \cap A \leq \operatorname{int}(G_1) \cap \operatorname{int}(A) = \operatorname{Int}(G_1 \cap A) \leq \operatorname{Int}(G_1)$ and so $H_1 = (f|A)^{-1}(V)$ is a fuzzy D-closed set in $(A, \tau A)$. Hence f|A is fuzzy contra-D-continuous function.

Theorem 4.20: fuzzy topological space (X, τ) is nearly fuzzy compact if and only if it is fuzzy compact and fuzzy strongly D-closed .

Proof: Obvious .

Theorem 4.21:If a fuzzy topological space (X, τ) is locally indiscrete space then fuzzy compactness and fuzzy strongly D-closed are the same.

Proof: Let (X, τ) be a fuzzy compact space. Since (X, τ) is a locally indiscrete space, then every fuzzy open set is closed and fuzzy compactness and fuzzy strongly D-compactness are the same in a locally indiscrete fuzzy topological space.

Theorem 4.22: A fuzzy topological space (X, τ) is fuzzy S-closed if and only if it is fuzzy strongly S-closed and fuzzy D-compact.

Proof: Obvious.

Vol. No.4, Issue No. 06, June 2016

www.ijates.com

ijates ISSN 2348 - 7550

REFERENCES

- [1]. J. Antony Rex Rodrigo and K.Dass, A new type of generalized closed sets, Internat. J.Math. Archive -3(4),2012,1517 1523
- [2]. J. Antony Rex Rodrigo and K.Dass, Weak and strong form of D-irresolute functions (Accepted).
- [3]. J. Antony Rex Rodrigo and K.Dass, D-continuous functions (communicated).
- [4]. S.P.Arya and R.Gupta,On strongly continuous mappings,Kyungpook Math.J.,131 -143.1974 [5]. K. Balachandran, P. Sundaram, H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser.A.Math 12 (1991),5-13.
- [6]. M. Caldas, S. Jafari, T. Noiri, M. Simeos, A new generalization of fuzzy contra-fuzzy continuity Via Levines fuzzy g-closed sets, Chaos Solitons Fractals 42 (2007),1595-1603.
- [7]. M. Caldas, S. Jafari, Some properties of fuzzy contra-β-continuous functions.Mem. Fac. Sci. Kochi Univ. Ser. A Math, 22 (2001), 19-28.
- [8]. J. Dontchev, Fuzzy contra-continuous functions and strongly S-closed spaces, Internat. J.Math. Math. Sci. 19 (1996), 303-310.
- [9]. J. Dontchev, S. Popvassilev, D. Stovrova, On the η -expansion topology for the co-semi. Fuzzy Regularization and midlyHausdorff spaces, Acta Math.Hungar. 80(1998),9-19.
- [10]. J. Dontchev, T.Noiri, Fuzzy contra-semicontinuous functions, Math. Pannon.10(1999),159- 168
- [11]. Y.Gnanambal, K. Balachandran, On gpr-continuous functions in topological spaces, Indian J. Pure Appl. Math. 30(6) (1999), 581 593.
- [12]. S. Jafari, T.Noiri, Fuzzy contra-super-continuous functions, Ann. Univ. Sci. Budapest 42(1999), 27-34.
- [13]. S. Jafari, T.Noiri, Fuzzy contra- α -continuous functions between topological spaces , Iran Int. J. Sci. 2 (2001), 153-167
- [14]. S. Jafari, T.Noiri, On fuzzy contra-precontinuous functions, Bull. Malays.Math.Sci.Soc. 25(2) (2002), 115-128.
- [15]. N. Levine, Semi-open sets, Semi-fuzzy continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [16]. N. Levine, Generalized closed sets in topology, Rend. Circ, Math. Palermo 19(2)(1970), 89-96.
- [17]. A.S. Mashour, M.E. Abd El-Monsef, S.N. El-Deep, On pre continuous and weak Precontinuous mappings, Proc. Math. Phys. Soc.Egypt 53 (1982), 47-53.
- [18]. A.S. Mashour, M.E. Abd El-Monsef, I.A.Hasanein, T. Noiri, Strongly compact spaces, Delta J.Sci. 8 (1984), 30-46.
- [19]. M. Mrsevic, On pairwise Roand R1 bitopological spaces, Bull. Math. Soc. Sci.Math. R.S. Roumanie 30 (78) (1986), 141 -148.
- [20]. T. Nieminen, On ultrapseudocompact and related spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 3 (1977), 185-205.
- [21]. T.Noiri, Super-fuzzy continuity and some strong forms of fuzzy continuity, Indian J.Pure Appl. Math. 15 (1984), 241 -250.
- [22]. T.M. Nour, contributions to the theory of bitopological spaces, Ph.D. Thesis, Univ. Of Delhi, 1989.

Vol. No.4, Issue No. 06, June 2016

www.ijates.com

ijates ISSN 2348 - 7550

[23]. M. Sheik John, A Study on generalizations of closed sets and continuous maps in topological and bitopological spaces ,Ph.D.Thesis, Bharathiar university, Coimbatore (2002). [24]. M.K. Singal, Mathur, On nearly compact spaces, Boll. Un. Mat. Ital., Serie IV (4-6) (1969), 702-710.

[25]. R. Staum, The algebra of bounded continuous functions into a non-archimedean field, Pacific J.Math. 50 (1974), 169-185.

[26]. M.H. Stone, Application of the theory Boolean rings to general topology, Trans. Amer.Math. Soc.,41, 375 – 381. 1937.

[27]. P. Sundaram, M.Sheik John, Weakly closed sets and weak continuous functions in topological spaces, Proc. 82nd Indian Sci. Cong.

Calcutta, (1995), 49.

[28]. P. Sundaram, M.Sheik John, On ω-closed sets in topology, ActaCienc. IndicaMath. 4 (2000), 389-392.

[29]. T.Thompson, S-closed spaces Proc. Amer. Math. Soc. 60 (1976), 335-338.