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ABSTRACT 

This paper presents a innovative mathematical technique applicable to analyses the free vibration analysis of 

stepped beams with circular cross section and Square stepped section. In this approach in which the finite 

element method is used. To make known the accuracy and effectiveness of the offered method, a number of 

numerical examples are given for free vibration analysis of beams. Numerical results showing good agreement 

with the results of other available studies, address the effects of the location and depth of the steps on the 

natural frequencies and mode shapes of the step beams. The outcomes of the study verified that presented 

method is appropriate for the vibration analysis of stepped beams with circular cross section and square cross 

section .The study compares various materials natural frequencies such as mild steel, copper, aluminum. In this 

study the cross section and length of the beam is kept constant and natural frequencies are calculated with 

Ansys software and compared with experimental values. 

 

I. INTRODUCTION  

 

In case of a free vibration study of a structure the main objective is to determine the natural frequencies 

corresponding to different modes of vibration of the system. Several different techniques and methodologies 

have been adopted for this purpose by different researchers.Vibration analysis of a beam is an important and 

peculiar subject of study in mechanical engineering. All real physical structures, when subjected to loads or 

displacements, behave dynamically. Engineering structures are designed to withstand the loads they are 

expected to be subject to while in service. Among them Beams are a standout amongst the most usually utilized 

structural components within various structural elements in numerous engineering applications and experience a 

wide mixed bag of static and element loads. Beams are widely used as structural components in engineering 

applications and also provide a fundamental model for many engineering applications. Aircraft wings, helicopter 

rotor blades, spacecraft antennae, and robot arms are all examples of structures that may be modeled with beam-

like elements. Beam sort structures are being generally utilized in steel shaped structure and manufacturing of 

machines. 

Beams with variable cross-section and/or material properties are frequently used in aeronautical engineering 

(e.g., rotor shafts and functionally graded beams), mechanical engineering (e.g., robot arms and crane booms), 

and civil engineering (e.g., beams, columns, and steel composite floor slabs in the single direction loading case). 

Stepped beam-like structures are widely used in various engineering fields, such as robot arm and tall building, 

etc. Therefore there is a necessary that construction should securely work during its service period. But, wreck 

initiates a failure span on structure. The instant changes introduced into a structure, either intentionally or 
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unintentionally which leads to adverse effect the current or future performance of that structure is defined as 

damage. Damage is one of the important aspects in structural analysis because of safety reason as well as 

economic growth of the industries 

 

II. LITERATURE REVIEW 

 

[1] Kapuria et al. presented a theoretical model and its experimental validation for the free vibration of a 

layered FG beam. Some research works are also available on the effect of nonlinear elastic foundations on free 

vibration behavior of FG beams. The governing equations were based on Euler-Bernoulli beam theory and 

solved using Galerkin's method and He's variational iteration method. A few researchers have concentrated on 

the free vibration of FG beams where the material property variation is along the length of the beam.  

[2] Simsek et al. derived the equation of motion by using Lagrange's equations and Newmark methodwas 

employed to find the dynamic responses of AFG beam.  

[3e6] Shahba et al. and [4,5] Shahba and Rajasekaran studied the free vibration and stability analysis of 

Euler-Bernoulli and Timoshenko beams through finite element approach and various numerical analysis 

methods.  

[7] Alshorbagy et al. employed numerical FEM and Euler-Bernoulli beam theory to investigate the dynamic 

characteristics of FG beams. [8] Huang et al. presented a new approach for investigating the vibration 

behaviors of non-uniform AFG Timoshenko beams by changing the coupled governing equations to a single 

governing equation by introducing an auxiliary function. [9,10] Huang and Li studied the dynamic and 

buckling behavior of AFG tapered beams by reducing the corresponding governing differential equation to 

Fredholm integral equations. [11]Aydogdu, [12] Elishakoff et al. and [13] Wu et al. investigated the free 

vibrations of AFG tapered beams using the semi inverse method. [14] Mazzei and Scott studied stability and 

vibration of AFG tapered shafts loaded by axial compressive forces.  

 

III. OBJECTIVE OF THE STUDY 

 

To study the free vibrational analysis of  cantilever beams of varying cross sections such as rectangular and 

circular, stepped beams and study the result of position of steps, Step depth and number of step present in the 

beams.. 

The objective of this research is to study and simulate the vibration characteristics of a vibration of a simply 

supported beam without and with attached multiple absorbers. Based on the research, there are several objectives 

that need to achieve. 

i. To determine the vibration reduction of a single vibration absorber attach to a beam 

ii. To investigate the effect of mass and damping on the absorber performance. 

iii. To determine the effect of attaching vibration absorber to reduce vibration level of a  cantilever beam. 
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IV. VARIOUS METHOS FOR FINDING NATURAL FREQUENCIES 

4.1Finite Element Method 

Among the numerical tools finite element method (FEM) is a competent one for the dynamic analysis of structures. 

Frequency-independent polynomial shape functions are used in the formulation of conventional FEM models. These 

can work for dynamic problems with lower frequencies wave modes but solutions become increasingly inaccurate 

with higher modes, where FEM model needs very large 

number of elements for better accuracy. 

4.2 Dynamic Stiffness Method   

It is an exact solution method. Here exact wave solutions to the governing differential equations is obtained to derive 

exact dynamic shape function leading to formulation of exact dynamic stiffness matrix in the frequency domain. In 

Dynamic Stiffness Method (DSM), governing differential equations adopted in the formulation of exact dynamic 

stiffness matrix decide the accuracy level. 

4.3 Spectral Analysis Method 

Among the frequency-domain methods the spectral analysis method (SAM) is one corresponding to the solutions by 

continuous Fourier transformation. Instead of continuous Fourier Transform, Discrete Fourier Transform (DFT) is 

widely practiced. This approach involves determining an infinite set of spectral components (or Fourier coefficients) 

in the frequency domain and performing the inverse Fourier transform to reconstruct the time histories of the 

solutions transform. 

4.4 Spectral Element Method  

Assembly and meshing of finite elements, exactness of the dynamic stiffness matrix with minimum number of DOFs 

from DSM and superposition of wave modes via DFT theory and FFT algorithm from SAM is found in Spectral 

element method (SEM). 

Case Study For Mils Steel  

Cantilever Stepped Beam:-Model Dimensions ( Big Dia. 50mm , Small dia 25 mm and Length 

150 mm each) 

 Mechanical Properties:- Young’s modulus (E) of mild steel is 210 Gpa, Yield strength (Sy) is 205 Mpa, 

Ultimate tensile strength (Sut) is 515 Mpa , density is 7850 kg/m
3 
, young’s Modulus is 210 Gpa 

 

Natural Frequency 1                                                                                    Natural Frequency 2 
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Natural Frequency 3                                                           All Natural Values of mild steel Cantilever Beam                             

 

CANTILEVER COPPER BEAM WITHOUT DAMPING:- Model specifications are kept 

same. 

Young’s modulus: - 1.2 Gpa. Density :- 8900 kg/m
3 

 

Natural Frequency 1                                                                                    Natural Frequency 2 

 

         Natural Frequency 3                                                           All Natural Values of Copper Cantilever 

Beam       

CANTILEVER ALUMINUM BEAM WITHOUT DAMPING:- 

Young’s modulus: - 0.69 Gpa 

Density :- 2700 kg/m
3 

Sr. No. Natural frequency at different nodes 

Node 1 558.22 Hz 

Node 2 558.41 Hz 

Node 3 1596.5 Hz 

Sr. No. Natural frequency at different nodes 

Node 1 395.57 Hz 

Node 2 395.7 Hz 

Node 3 1131.3 Hz 
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Natural Frequency 1                                                       Natural Frequency 2 

The values of natural frequency for Aluminum without damper are listed in table 

Sr. No. Natural frequency at different nodes 

Node 1 546.46 Hz 

Node 2 546.64 Hz 

Node 3 1562.5 Hz 

 

Natural Frequency 3            

Natural frequency Result Table For  circularsection using Mild Steel, Aluminum, and Copper 

  

Sr. No. Natural frequency at different 

nodes for Aluminum 

Natural frequency at 

different nodes for Copper 

Natural frequency at 

different nodes for Mild Steel 

Node 1 546.46 Hz 395.57 Hz 558.22 Hz 

Node 2 546.64 Hz 395.7 Hz 558.41 Hz 

Node 3 1562.5 Hz 1131.3 Hz 1596.5 Hz 

 

Damping frequency Result Table for circular section using Mild Steel, Aluminum, and Copper 

 

Sr. No. Damped frequency at 

different nodes for Aluminum 

Damped frequency at 

different nodes for Copper 

Damped frequency at 

different nodes for Mild Steel 

Node 1 545.6 Hz 365.8 Hz 540.99 Hz 

Node 2 545.79 Hz 365.92 Hz 541.17 Hz 

Node 3 1560.4 Hz 1045.8 Hz 1547.2 Hz 
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Natural frequency Result Table for  square section using Mild Steel, Aluminum, and Copper 

 

Sr. No. Natural frequency at 

different nodes for Aluminum 

Natural frequency at 

different nodes for Copper 

Natural frequency at different 

nodes for Mild Steel 

Node 1 626.51  Hz 419.44  Hz 626.07  Hz 

Node 2 626.79 Hz 419.55 Hz 626.26 Hz 

Node 3 1772.9 Hz 1186.6 Hz 1772.3 Hz 

 

Sr. No. Damped frequency at 

different nodes for Aluminum 

Damped frequency at 

different nodes for Copper 

Damped frequency at different nodes 

for Mild Steel 

Node 1 626.51  Hz 424.19 Hz 620.17  Hz 

Node 2 626.79 Hz 424.43  Hz 620.36 Hz 

Node 3 1772.9 Hz 1195.3 Hz 1755.6 Hz 

Damped frequency Result Table for  square section using Mild Steel, Aluminum, and Copper 

 

V. EXPERIMENTAL VALIDATION:- 

Calculation of experimental natural frequency 

To observe the natural frequencies of the cantilever beam subjected to small initial disturbance 

experimentally up to third mode, the experiment was conducted with the specified cantilever beam 

specimen.The data of time history (Displacement-Time), and FFT plot was recorded. The natural 

frequencies of the system can be obtained directly by observing the FFT plot. The location of peak values 

relates to the natural frequencies of the system. Fig. below shows a typical FFT plot  

 

 A beam of a particular material (steel, aluminum or copper), dimensions (L, w, d) and transducer (i.e., 

measuring device, e.g. strain gauge, accelerometer, vibrato meter) was chosen.  

 One end of the beam was clamped as the cantilever beam support.  

 An accelerometer (with magnetic base) was placed at the free end of the cantilever beam ,to observe 

the free vibration response (acceleration). 

 An initial deflection was given to the cantilever beam and allowed to oscillate on its own. To get the 

higher frequency it is recommended to give initial displacement at an arbitrary position apart from 

the free end of the beam (e.g. at the mid span). 

 The reading is observed 
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Good agreement between the theoretically calculated natural frequency and the experimental one is 

found. The correction for the mass of the sensor will improve the correlation better. The present 

theoretical calculation is based on the assumption that one end of the cantilever beam is properly fixed. 

However, in actual practice it may not be always the case because of flexibility in support. The 

experimental values obtained are 559.5 Hz  for first  mode. The Various results are listed below. 

SQUARE SCETION 

 Mild Steel Square cross section the natural frequency is 559.5 Hz 

 Copper with square cross section having step the natural frequency is 385.88 Hz  

 Aluminum with square cross section step the natural frequency is  551.3. 

CIRCULLAR SECTION 

 Mild Steel the natural frequency is  491.22 Hz 

 Copper the natural frequency is 340.19 Hz 

 Aluminum the natural frequency is  502.8 Hz 

 

VI. CONCLUSION 

 

From this study we have concluded following results Square section of Mild steel have higher values of 

natural frequencies than circullar section. 

The frequencies of vibration of beams are more affected by the position of the depths. Near fixed end of a 

cantilever beam reduces free vibration frequencies more than a relatively bigger at free end. 

The frequencies of circullar section are smaller than the square section it means that the shape of the 

section plays important role for find the natural frequency of the beam. The natural frequecy tables are 

listed below for both section which is self explemetry. 

For Circullar Section Stepped Beam 

Sr. No Natural frequency 1 

Experimental Result 

Natural frequency 1 

Ansys Result  

 

% Variation  

Mild Steel 491.22 558.22 12.00% 

Copper 340.19 359.57 5.3% 

Aluminum 502.8 546.64 8.01% 

For Square Section Stepped Beam 

Sr. No Natural frequency 1 

Experimental Result 

Natural frequency 1 

Ansys Result  

 

% Variation  

Mild Steel 559.5 626.07 10.6% 

Copper 385.88 419.44 8.00% 

Aluminum 551.3 626.51 12.00% 
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