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ABSTRACT 

In this paper the terms left primary Γ-ideal, lateral primary Γ-ideal ,right primary Γ-ideal ,primary Γ-ideal, left 

primary ternary Γ-semigroup , lateral primary ternary Γ-semigroup , right primary ternary Γ-semigroup ,primary 

ternary Γ-semigroup are introduced.It is proved that A be an Γ-ideal in a ternary Γ-semigroup T and if X,Y,Z are 

three Γ-ideals of T such that 1)  X ΓY ΓZ  ⊆ A and  Y⊈ A, Z ⊈ A then X ⊆ A iff x,y,z ∈T , <x> Γ<y> Γ<z> ⊆ A 

and  y∉A ,  z∉A ,  x ∈ A . 2) X ΓY ΓZ  ⊆ A and  X ⊈ A, Z ⊈ A then Y ⊆ A  iff x,y,z ∈T , <x> Γ<y> Γ<z> ⊆ A 

and  x∉A ,  z∉A ,  y∈ A . 3)  X ΓY ΓZ  ⊆ A and  X ⊈ A, Y ⊈ A then Z⊆ A  iff x,y,z ∈T , <x> Γ<y> Γ<z> ⊆ A 

and  x∉A ,  y∉A ,  z∈ A . Further it is proved that if T be a commutative ternary 

 Γ-semigroup and A be a Γ-ideal of T then the conditions  1) A is left primary ternary Γ-ideal . 2) X ΓY ΓZ  ⊆ A and  

Y⊈ A, Z ⊈ A then X ⊆ A . 3) x,y,z ∈T , <x> Γ<y> Γ<z> ⊆ A and  y∉A ,  z∉A ,  x ∈ A are equivalent. It is also 

proved that if T be a commutative ternary  Γ-semigroup and A be a Γ-ideal of T then the conditions (1)A is lateral 

primary ternary Γ-ideal. 2)  X ΓY ΓZ  ⊆ A and  X ⊈ A, Z ⊈ A then Y ⊆ A  .3) x, y, z ∈T , <x> Γ<y> Γ<z> ⊆ A 

and  x∉A ,  z∉A ,  y∈ A . Further the conditions for an  Γ-ideal in a commutative ternary Γ-semigroup T , 1) A is 

right primary  Γ-ideal 2) X ΓY ΓZ  ⊆ A and  X ⊈ A, Y ⊈ A then Z⊆ A  3) x,y,z ∈T , <x> Γ<y> Γ<z> ⊆ A and  

x∉A ,  y∉A ,  z∈ A are equivalent . It is proved that every Γ-ideal A in a ternary Γ-semigroup T , 1) T is a left 

primary iff every Γ-ideal A satisfies  X,Y,Z are three Γ-ideals of T such that X ΓY ΓZ  ⊆ A and  Y⊈ A, Z ⊈ A then X 

⊆ A . 2) T is a lateral primary iff every  Γ-ideal A satisfies X ΓY ΓZ  ⊆ A and   X ⊈ A, Z ⊈ A then Y ⊆ A  .3) T 

is a right primary iff every Γ-ideal satisfies X,Y,Z are three Γ-ideals of  T such that X ΓY ΓZ  ⊆ A  and  X ⊈ A, Y ⊈ A 

then Z⊆ A . It is proved that T be a ternary Γ-semigroup with identity and M be the unique maximal Γ-ideal in T. 

If  A  = M for some Γ-ideal A in T then A is a primary Γ-ideal. Further it is proved that if identity and M is the 
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unique maximal Γ-ideal of T then for any odd natural number n , (m Γ )
n-1 

m  is a primary Γ-ideal of T . It is proved 

that if A is a Γ-ideal of quasi commutative ternary Γ-semigroup T then 1) A is primary .2) A is left primary 3) A is 

lateral primary 4) A is right primary are equivalent. 

  

Subject Classification: 16Y30, 16Y99 

Keywords: Left primary Γ-ideal lateral primaryΓ-ideal , right primary Γ-ideal , primary Γ-ideal , left 

primary ternary Γ-semigroup , lateral ternary Γ-semigroup , right ternary Γ-semigroup , primary 

ternary Γ-semigroup .  

I INTRODUCTION 

The literature of ternary algebraic system was introduced by D. H. Lehmer [8] in 1932. He investigated certain 

ternary algebraic systems called triplexes which turn out to be ternary groups. Dutta and Kar [7] have introduced the 

notion of ternary semi rings and characterized many results in terms of regular ternary semiring.  In the year 1980, 

A. Anajneyulu made a study of primary ideals in semigroups.  Later, in the year 2011, D. Madhusudhana Rao 

extended those results to Γ-semigroups.  Further, D. Madhusudhana Rao and Ch. Manikya Rao applied those notions 

to ternary semigroups.  In this paper we mainly introduce the notion of primary ternary Γ-ideals of ternary Γ-

semigroup and characterize those primary ternary Γ-ideals. 

II PRELIMINARIES  

Definition 2.1:  Let T and Γ be any two non-empty sets. T is called a ternary  Γ-semigroup if there exists a 

mapping from T× Γ× T× Γ × T to T which maps (a,b,c,α,β ) → aαbβc satisfying the condition  (aαbβc)γdδe =  

aα(bβcγd)δe =  aαbβ(cγdδe) ∀ a,b,c,d,e ∈ T,  α,β,γ,δ ∈ Γ .   

Note 2.2: Let T be a ternary Γ –semigroup. If A,B,C are subsets of T we shall denote the set  { aαbβc : a ∈ A , b ∈B, 

c ∈ C  , α,β ∈ Γ } by A Γ B Γ C . 

Definition 2.3: An element a of a ternary Γ –semigroup T is said to be left identity of T provided aαaβt = t ∀ t ∈ T , 

α,β ∈ Γ . 

Definition 2.4: An element a of a ternary Γ-semigroup T is said to be right identity of T provided  tαaβa  = t ∀ t  

∈ T , α,β ∈ Γ . 

Definition 2.5: An element a of a ternary Γ –semigroup T is said to be two sided identity or an identity provided it 

is both left identity and right identity.  

Note 2.6:  Let T be a ternary Γ –semigroup. If T has an identity, let T
1 
= T and if  T does not have an identity , let T

1 
 

be the ternary Γ –semigroup T with an identity adjoined usually denoted by symbol 1. 



 

270 | P a g e  

 

Definition 2.7: A ternary Γ –semigroup T is said to be commutative provided aΓbΓc = b Γa Γc = c Γa Γb = cΓb Γa 

= b Γc Γa  ∀ a,b,c ∈ T. 

Definition 2.8: A ternary Γ –semigroup T is said to be quasi commutative provided for all a,b,c  ∈ T there exists an 

odd natural number n such that aαbαc = (bα)
n
aαc = bαcαa = (cα)

n
bαa = cαaαb = (aα)

n
cαa  ∀ a,b,c ∈ T ,   α ∈ Γ . 

Definition 2.9: A ternary Γ–semigroup T is said to be globally idempotent ternary Γ-semigroup provided TΓTΓT = 

T.  

Definition 2.10:  A ternary Γ –semigroup T is said to be left duo ternary Γ-semigroup provided every left ternary  

Γ-ideal of T is a two sided  ternary  Γ-ideal of T. 

Definition 2.11:  A ternary Γ –semigroup T is said to be right duo ternary Γ-semigroup provided every right 

ternary Γ-ideal of T is a two sided ternary Γ-ideal of T. 

Definition 2.12: A ternary Γ –semigroup T is said to be   duo ternary Γ-semigroup provided it is both left duo   

ternary Γ –semigroup and right ternary Γ –semigroup. 

Definition 2.13: A nonempty subset A of a ternary Γ-semigroup T is said to be right ternary Γ-ideal provided A ΓT 

ΓT ⊆ A.   

Definition 2.14: A nonempty subset A of a ternary Γ -semigroup T is said to be two sided ternary Γ-ideal provided 

it is both left and right ternary Γ-ideals of T.   

Definition 2.15:  A ternary Γ- ideal A of a ternary Γ –semigroup T is said to be principal ternary Γ-ideal provided 

A is a ternary  Γ-ideal generated by single element a . It is denoted by J[a] = <a>. 

Note 2.16: If T is a ternary Γ-semigroup and a∈ T then <a> = J[a] = a∪aΓTΓT∪TΓTΓa∪TΓaΓT = T ΓT
1
ΓaΓT

1
ΓT

1
. 

Definition 2.17: A ternary Γ- ideal A of a ternary Γ –semigroup T is said to be a completely prime ternary Γ- 

ideal provided x Γy Γz ⊆ A ∀ x, y, z ∈ T implies either x ∈ A or y∈A or z∈ A. 

Definition 2.18: A ternary Γ- ideal A of a ternary Γ –semigroup T is said to be a prime ternary Γ- ideal provided  

X ΓY ΓZ ⊆ A where X,Y,Z are  ternary  Γ-ideals then either  X⊆ A or Y⊆ A or Z⊆ A. 

Definition 2.19:  A ternary Γ- ideal A of a ternary Γ –semigroup T is said to be a completely semiprime ternary  

Γ- ideal provided x Γx Γx ⊆ A; x ∈ T implies either x ∈ A.  

Definition 2.20: A ternary Γ- ideal A of a ternary Γ –semigroup T is said to be a semiprime ternary Γ- ideal 

provided x Γx ΓT Γx Γx ⊆ A; x ∈ T implies either x ∈ A.  

Theorem 2.21: Every prime ternary Γ- ideal of a ternary Γ–semigroup T is a semiprime ternary Γ- ideal of T.  
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Definition 2.22: A ternary Γ- ideal A of a ternary Γ –semigroup T is said to be semipseudo symmetric ternary Γ- 

ideal provided for any odd natural number n , x ∈ T , (x Γ)
n-1

 x ⊆ A  ⟹ (<x> Γ)
n-1

<x>  ⊆ A  . 

III PRIMARY TERNARY Γ –IDEALS  

Definition 3.1: A ternary Γ- ideal A of a ternary Γ –semigroup T is said to be left primary ternary Γ-ideal  

provided  

1. If X, Y, Z are three ternary Γ- ideals of T such that X Γ YΓZ  ⊆ A  and Y⊈ A, Z ⊈ A then X ⊆ A . 

     2. A  is a prime ternary Γ- ideal of T.  

Definition 3.2: A ternary Γ- ideal A of a ternary Γ–semigroup T is said to be lateral primary ternary Γ- ideal 

provided   

     1. If X, Y, Z are three ternary Γ- ideals of T such that X Γ YΓZ ⊆ A and X⊈ A, Z ⊈ A then Y ⊆ A . 

     2. A  is a prime ternary Γ- ideal of T.  

Definition 3.3:  A ternary Γ- ideal A of a ternary Γ –semigroup T is said to be right primary ternary Γ-ideal  

provided   

     1. If X, Y, Z are three ternary Γ- ideals of T such that X Γ YΓZ ⊆ A  and X⊈ A, Y ⊈ A then Z ⊆ A . 

     2. A  is a prime ternary Γ- ideal of T. 

Definition 3.4: A ternary Γ- ideal A of a ternary Γ–semigroup T is said to be primary ternary Γ-ideal provided A 

is  left primary ternary  Γ- ideal , lateral primary ternary Γ- ideal , right primary ternary  Γ- ideal. 

Theorem 3.5: Let A be a ternary Γ-ideal of a ternary Γ-semigroup T. If X, Y, Z are three ternary Γ-ideals of 

T such that XΓY ΓZ ⊆A and Y ⊈ A , Z ⊈ A then X ⊆ A iff  <x> Γ<y> Γ<z> ⊆ A and  y∉A ,  z∉A ,  x ∈ A . 

Proof: Suppose that A is a ternary Γ – ideal of a ternary Γ – semigroup T and if X, Y, Z  are three ternary Γ–ideals 

of T such that X ΓY ΓZ ⊆A  and y ⊈ A , z ⊈ A then x ⊆ A . 

Let x, y, z ∈ T , y ∉ A , z ∉ A . Then <x>Γ<y>Γ<z> ⊆    XΓYΓZ ⊆ A and <y> ⊈ A , <z> ⊈ A. 

∴ by supposition <x>Γ<y>Γ<z> ⊆ A and < y >⊈A, < z >⊈A ⟹ < x >⊆ A .  ∴ x ∈ A . 

Conversely suppose that x,y,z ∈  T , <x> Γ<y> Γ<z> ⊆   A  and  y∉A , z∉A then x ∈ A . 

Let X, Y, Z  be three ternary Γ – ideals of T such that XΓY ΓZ ⊆  A and y⊈A , z⊈A . 

Suppose if possible X ⊈ A . then there exists x ∈ X such that x ∉ A .  

Since Y ⊈ A , let y ∈ Y so that y ∉ A .Since Z ⊈ A , let  z ∈ Z  so that z ∉ A . 
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Now <x> Γ<y> Γ<z> ⊆ X Γ Y Γ Z ⊆ A and y∉A , z∉A ⟹ x ∈ A . It is a contradiction. Therefore, x ⊆ A . 

Therefore if X, Y, Z are three ternary Γ – ideals of T such that X ΓY ΓZ ⊆A and  y⊈A , z⊈A then X ⊆ A . Hence 

the theorem. 

Theorem 3.6: Let A be a ternary Γ–ideal of a ternary Γ-semigroup T.  If X, Y, Z are three ternary Γ-ideals of 

T such that XΓY ΓZ ⊆A and X ⊈ A, Z ⊈ A then Y ⊆ A iff <x> Γ<y> Γ<z> ⊆ A and  x∉A ,  z∉A ,  y ∈ A . 

Proof:  The proof is similar to the theorem 3.5. 

Theorem 3.7: Let A be a ternary Γ – ideal of a ternary Γ-semigroup T. If X, Y, Z  are three ternary Γ-ideals 

of T such that XΓY ΓZ  ⊆A and X ⊈ A , Y ⊈ A  then  Z ⊆ A iff  <x> Γ<y> Γ<z> ⊆ A and  x∉A ,  y∉A ,  z ∈ 

A .  

Proof: The proof is similar to the theorem 3.5. 

Theorem 3.8: Let T be a commutative ternary Γ – semigroup and A is a ternary Γ-ideal of T. Then the 

following conditions are equivalent. 

1. A is a primary ternary Γ- ideal 

2. X, Y, Z are three ternary Γ-ideals of T , XΓY ΓZ  ⊆A  and  Y ⊈ A , Z ⊈ A then X ⊆ A  

3. x, y, z ∈ T, x Γy Γz ⊆A  ,  y∉  A ,z∉ A then x   ∈ A . 

Proof: (1) ⇒ (2) : Suppose A is a primary ternary Γ– ideal of T . Then A is a left primary ternary Γ– ideal of T.  So, 

by definition 3.1, we get X, Y, Z are three ternary Γ– ideals of T , XΓYΓZ ⊆ A,     Y⊈A,Z⊈A ⇒ X ⊆ A  

(2) ⇒ (3): Suppose that X,Y,Z are three  ternary Γ – ideals of T , XΓYΓZ ⊆ A and Y⊈A , Z⊈A then X ⊆ A .  Let 

x,y,z ∈ T , xΓyΓz ⊆ A , y∉A , z∉A , xΓyΓz ⊆ A ⇒ <x>Γ<y>Γ<z> ⊆ A .  Also, y∉A , z∉A .  Now <x>Γ<y>Γ<y> 

⊆ A and <y>⊈ A, <z>⊈A.  ∴ by assumption < x > ⊆ A  ⇒ x ∈ A . 

(3) ⇒ (1): suppose x,y,z ∈ T , x Γy Γz ⊆ A , y∉A, z∉A then x ∈ A .  Let X, Y, Z are three ternary Γ– ideals of T , 

XΓYΓZ ⊆ A  and Y⊈A, Z⊈A  ⇒ there exists y∈Y,  z∈Z such that y∉A, z∉A . 

Suppose if possible X⊈ A  . Then there exists x∈X such that x∉ A . 

Now xΓyΓz ⊆ XΓYΓZ ⊆ A.  ∴ xΓyΓz ⊆ A and y∉A, z∉A and x∉A . It is a contradiction. 

∴ X ⊆ A . Let x,y,z ∈  T , xΓyΓz ⊆ A .    Suppose y∉ A  , z∉ A  . 

Now x ΓyΓz ⊆ A  ⇒ (xΓyΓzΓ)
m-1

  for some odd natural number m ⇒ (xΓ)
m-1

xΓ(yΓ)
m-1

yΓ(zΓ)
m-1

z ⊆ A ⇒ (yΓ)
m-1

yΓ 

⊈ A , (zΓ)
m-1

z ⊈ A ⇒ (xΓ)
m-1

x ⊆ A  ⇒ x ∈ ( )A = A . 
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A  is a completely prime ternary Γ-ideal and hence A is a prime ternary Γ– ideal. 

∴ A is a left primary ternary Γ-ideal. Similarly, A is a right primary ternary Γ-ideal and A is a lateral primary ternary 

Γ-ideal.  Hence A is a primary ternary Γ-ideal. 

Note 3.9: In an arbitrary ternary Γ-semigroup a left primary ternary Γ – ideal is not necessarily a right 

primary ternary Γ – ideal. 

Theorem 3.10: Let T be a commutative ternary Γ – semigroup and A is a ternary Γ – ideal of T . Then the 

following conditions are equivalent. 

1. A is a primary ternary Γ – ideal. 

2. X, Y, Z are three ternary Γ – ideals of T, X ΓY ΓZ ⊆ A and X⊈A,Z⊈A then Y ⊆ A  

3. x, y, z ∈ T, xΓyΓz ⊆ A, x∉A, z∉A then x ∈ A . 

Proof: The proof is similar to theorem 3.8. 

Theorem 3.11: Let T be a commutative ternary Γ – semigroup and A is a ternary Γ – ideal of T. Then the 

following conditions are equivalent . 

1. A is a primary ternary Γ – ideal. 

2. X, Y, Z are three ternary Γ – ideals of T, XΓYΓZ ⊆ A , x⊈A,Y⊈A then Z ⊆ A . 

3. x, y, z ∈ T , xΓyΓz ⊆ A , x∉A, y∉A then z ∈ A . 

Proof: The proof is similar to theorem 3.8 . 

Theorem 3.12: Every ternary Γ-ideal A in a ternary Γ– semigroup T is left primary iff every ternary Γ-ideal 

A satisfies that X,Y,Z are three ternary Γ-ideals of T such that X ΓY ΓZ  ⊆ A and Y ⊈ A , Z⊈ A  ⇒ X ⊆ A . 

Proof :  If every ternary  Γ – ideal A in T is left primary then clearly every ternary Γ – ideal satisfies if  X,Y,Z are 

three ternary Γ – ideals of T such that  XΓYΓZ ⊆ A and y⊈A , z ⊈ A  ⇒ X ⊆ A  .Conversly  suppose that for 

every ternary Γ – ideal A of T satisfies that  XΓYΓZ ⊆ A and   y⊈A ,  z⊈A  ⇒ X ⊆ A  . Let A be any ternary  Γ – 

ideal in T.  Suppose that < X >Γ< Y >Γ< Z > ⊆ A .  If < Y > ⊈ A , < Z > ⊈ A  then by our assumption 

 x ∈ A  =  A .  Therefore  A is a   prime ternary  Γ-ideal . Hence A is left ternary. 

Theorem 3.13:  Every ternary Γ-ideal A in a ternary Γ-semigroup T is lateral primary iff every ternary Γ-

ideal A satisfies that X, Y, Z are three ternary Γ-ideals of T such that XΓYΓZ ⊆ A and X  ⊈ A, Z ⊈ A  ⇒ Y ⊆ 

A . 

Proof:  The proof is similar to theorem 3.12. 
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Theorem 3.14:  Every ternary Γ-ideal A in a ternary Γ-semigroup T is right primary iff every ternary Γ-ideal 

A satisfies that X, Y, Z are three ternary Γ-ideals of T such that XΓYΓZ ⊆ A and X ⊈ A , Y ⊈ A  ⇒ Z ⊆ A . 

Proof :  The proof is similar to theorem 3.12. 

Definition 3.15: A ternary Γ-semigroup T is said to be left primary provided every ternary Γ-ideal in T is a left 

primary ternary Γ-ideal. 

Definition 3.16: A ternary Γ-semigroup T is said to be lateral primary provided every ternary Γ-ideal in T is a 

lateral primary ternary Γ-ideal. 

Definition 3.17: A ternary Γ-semigroup T is said to be right primary provided every ternary Γ-ideal in T is a right 

primary ternary Γ-ideal. 

Definition 3.18:  A ternary Γ-semigroup T is said to be primary provided every ternary Γ-ideal in T is a primary 

ternary Γ-ideal .  

Theorem 3.19: Let T be a ternary Γ-semigroup with identity and let M be the unique Maximal ternary Γ-

ideal of T . If  A  = M for some ternary Γ-ideal of T then A is a primary ternary Γ-ideal. 

Proof: Let <x> Γ <y> Γ <z> ⊆ A and  y∉A , z∉A . If x ∉  A  then <x> ⊈ A  = M. Since M is union of all 

proper ternary Γ – ideals of T , we have  <x> = T and hence <y> = <z> =  <x> Γ<y> Γ<z>  ⊆ A .  It is a 

contradiction. Therefore, x  ∈ A . Let <x> Γ<y> Γ<z>  ⊆ A and <y> ⊈ A , <z> ⊈ A  . Since M is the 

maximal ternaryΓ-ideal we have <x> = T. hence <y> = <z> =   <x> Γ<y> Γ<z> ⊆ A . It is a contradiction. 

Therefore <x> ⊆ A .  Similarly, if  <x> ⊈ A then <y> ⊆ A , <z> ⊆ A  and hence A  = M is a prime 

ternary Γ – ideal .  Thus A is left primary. By symmetry it follows that A is right primary, lateral primary. Therefore, 

A is a primary ternary Γ – ideal.  

Note 3.20: If a ternary Γ semigroup T has no identity then the theorem 3.19 is not true even if the ternary Γ– 

semigroup T has a unique maximal ternary Γ-ideal. 

Theorem 3.21: If T is a ternary Γ-semigroup with identity then for any odd natural number n, (mΓ )
n-1 

m is 

primary ternary Γ-ideal of T where m is unique maximal ternary Γ-ideal of T. 

Proof:  Since M is the only prime ternary Γ-ideal containing (m Γ )
n-1 

m , we have  
n 1

m  m


 = m and hence 

by theorem 3.19 , (m Γ )
n-1 

m is prime ternary Γ-ideal . 

Note 3.22: If T has no identity then theorem 3.21 is not true. 
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Theorem 3.23: In Quasi commutative ternary Γ-semigroup T a ternary Γ-ideal A of T is left primary iff right 

primary. 

Proof: Suppose A is a left primary ternary Γ-ideal. Let x Γy Γz ∈ A.  Since T is a quasi-commutative ternary Γ-

semigroup we have x Γy Γz  = y Γz Γx = (z Γ)
n-1

 z Γy Γx = z Γx Γy =  (x Γ)
n-1

 x Γz Γy for some odd natural number n.   

So  (z Γ)
n-1

 z Γy Γx  ∈ A and  x ∉ A , y ∉ A .  Since A is left primary we have (z Γ)
n-1

 z  ∈ A  and since  A  is 

prime ideal  z ∈ A  . Therefore A is a right primary ternary Γ-ideal.  

Similarly, we can prove that if A is a right primary ternary Γ-ideal then A is a left ternary Γ-ideal. 

Theorem 3.24: In a quasi-commutative ternary Γ-semigroup T a ternary Γ-ideal A of T is left primary iff A is 

lateral primary. 

Proof: Suppose that A is a left primary ternary Γ-ideal. Let  x Γy Γz  ∈ A and x ∈ A , z ∉A. Since T is quasi 

commutative ternary Γ-semigroup we have x Γy Γz  = y Γz Γx = (z Γ)
n-1

 z Γy Γx = z Γx Γy =  (x Γ)
n-1

 x Γz Γy for 

some odd natural number n.  So y Γz Γx ∈ A and x ∉A , z∉A . Since A is left primary we have y ∈ A and since 

A is prime ternary Γ-ideal, y ∈ A . Therefore, A is lateral primary ternary Γ-ideal.  

Similarly we can prove that if A is a lateral ternary Γ-ideal then A is left primary ternary Γ-ideal . 

Corollary 3.25: If A is a ternary Γ-ideal of quasi commutative ternary Γ-semigroup T then the following are 

equivalent 

1. A is primary 

2. A is left primary 

3. A is lateral primary 

4. A is right primary. 

 

IV CONCLUSION  

In this paper, efforts are made to introduce the notion of primary ternary Γ-ideals in ternary Γ-semigroups and 

characterize them. This literature of primary ternary Γ-ideals can use many other algebraic strictures.  
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