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ABSTRACT

It is concerned with continuation methods for contractive and non expansive maps. We show initially that the
property of having a fixed point is invariant by homotopy for contractions. Using this result a nonlinear
alternative of Leray-Schauder type is presented for contractive maps and subsequently generalized for
nonexpansive maps. An application of the nonlinear alternative for contractions is demonstrated with a second
order homogeneous Dirichlet problem. Fixed point theory for continuous, single valued maps in finite and

infinite dimensional Banach spaces with a discrete boundary value problem.
I1. INTRODUCTION

We begin this paper by showing that the property of having a fixed point is invariant by homotopy for

contractions.

Let (X, d) be a complete metric space and U an open subset of X.
Definition 1.1 Let F: U — X and G : U — X be two contractions;
here U denotes the closure of U in X.

We say that F and G are homotopic

if there exists H : U x [0, 1] — X with the following properties:

@ H(-,0)=Gand H(-, 1) = F;
(b) x = H(x, t) for every x € 0U and t € [0, 1] (here dU denotes the boundary of U in X);
(c) there exists a, 0 < o < 1, such that d(H(x, t),H(y, t)) <a d(X, y)
forevery x,y e Uandt € [0, 1];
(d) there exists M, M > 0, such that d(H(x, t),H(x, s)) < M |t — s| for
everyx e Uandt, s € [0, 1].
Theorem 1.1 Let (X, d) be a complete metric space and U an open

subset of X. Suppose that F: U— X and G : U — X are two homotopic
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contractive maps and G has a fixed point in U. Then F has a fixed point in U.

Proof Consider the set
A={L€[0,1]:x=H(x, 1) forsomex e U }
where H is a homotopy between F and G as described in Definition 3.1.
Notice A is nonempty since G has a fixed point, that is, 0 € A. We will
show that A is both open and closed in [0, 1] and hence by connectedness
we have that A = [0, 1]. As a result, F has a fixed point in U.
We first show that A is closed in [0, 1]. To see this let
{An}o n=1 A within — X [0, 1] as n—oo.

We must show that L € A. Sinceane Aforn=1,2,...,
there exists
xn € Uwith  xn=H(xn, An). Also fornm e {1,2,.. .}
we have
d(xn, xm) = d(H(xn, An),H(xm, Am))

< d(H(xn, xn),H(xn, Am)) + d(H(xn, Am),H(xm, Am))

< M|An — Am| + ad(xn, xm),

that is,

dxn, xm) < (=) an - aml.

Since {An} is a Cauchy sequence we have that {xn} is also a Cauchy sequence, and since X is

complete there exists x € U with  lim___x = x Inaddition, x = H(x, A) since
d(xn,H(x, A)) = d(H(xn, An),H(x, 1))

<M |An = A + ad(xn, Xx).
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Thus A € Aand A is closed in [0, 1].

Next we show that A is open in [0, 1]. Let A0 € A. Then there exists

X0 € U with x0 = H(x0, A0). Fix € > 0 such that

1
cA-ajr
- M

where r < dist(x0, o U),
and where dist(x0, oU) = inf{d(x0, x) : x € U }. Fix A € (AO—€, AO+€).
Then for X € B(x0, r) = {x : d(x, x0) < r},
d(x0,H(x, 1)) < d(H(x0, A0),H(x, A0)) + d(H(x, A0),H(x, 1))
< ad(x0, x) +M|[r — 0|
_ <art+(@-o)r=r.
Thus for each fixed A € (A\0—€, A0 +€),
H(-, 1) : B(x0, r) — B(xO0, r).
We can now apply Theorem 1.1 (an argument based on Theorem 1.3

could also be used) to deduce that H(-, &) has a fixed point in U. Thus

L € A forany A € (AO—€, A0 +€),and therefore A is open in [0, 1].we will assume that X is a
Banach space. We now present a nonlinear alternative of Leray—Schauder type for

contractive maps.

Theorem 3.2 Suppose U is an open subset of a Banach space X,0 € U
and F : U — X a contraction with F(U ) boded. Then either

(A1) F has a fixed point in U, or

(A2) there exist . € (0, 1) and u € & U with u = A F(u) holds.

Proof:- Assume (A2) does not hold and F has no fixed points on U

(otherwise we are finished). Then
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u#AF(u) forallue oUand A € [0, 1].

Let H: U x [0, 1] — X be given by
H(X, t) = tF (x),

and let G be the zero map. Notice G has a fixed point in U (that is, 0 = G(0)) and F and G are
two homotopic, contractive mappings. We can now apply Theorem 3.1 to deduce that there
exists x € U with x = F(x), that is, (A1) occurs. It is natural to ask whether we can extend

Theorem 3.2 to non expansive maps as Theorem 2.5 suggests.

Theorem 3.3 Let U be a boded, open, convex subset of a iformly convex Banach space X,

with 0 € U and F : U — X a non expansive map. Then either
(Al) F has a fixed point in U, or
(A2) there exist A € (0, 1) and u € 6 U with u = AF(u) is true.

Proof:- Assume (A2) does not hold. Consider for each n € {2, 3, .. .}, the
Mapping F, :=(1 - i)F U - X

Notice that Fn is a contraction with contraction constant 1 — 1/n. Applying Theorem 3.2 to

F,,, we deduce that either Fn has a fixed point in U, or there exist A € (0, 1) and u € U with u

=AF, (u).

Suppose the latter is true, that is, there exist A € (0, 1) and u € 6U with u = A F,, (u).
Then

u=2(1--) F(u) = nF(u) where 0 < =A(1 - <1

— a contradiction since property (A2) does not occur. Consequently foreachn € {2, 3, ...}

we have that Fn has a fixed point € U.

A standard result (if E is a reflexive Banach space, then any norm boded sequence in E has a
weakly convergent subsequence) implies (since U is closed, boded and convex — hence
weakly closed) that there exist a subsequence S of integers and a u € U with ; u as n—oo in

S; here —; denotes weak convergence.
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In addition since = (1 — 1/n)F(u,,) we have

I = B) ()l = ZIFG,) I
<=lIF(u,) —F(0)l + ¥ (0) I
<=ll(u,) = F(O)I.

Thus (I — F)(u,,) converges strongly to 0. The demiclosedness of | — F (see Exercise 2.8)

implies that u = F(u), and as a result (A1) occurs.

To illustrate how Theorem 3.2 can be applied in practice we turn our attention to the second

order homogeneous Dirichlet problem,(3.1)
y"= {t, y,y") fort € [a, b],

y(a) =y(b) =0,

where f : [a, b] x R> > R is continuous. Associated with (3.1) we consider the following

related family of problems:

(B2

y*=Af (t, y, y') fort € [a, b],

y(@) =y(b) =0,

for A € (0, 1). Define an operator F : C'[a, b] — C[a, b] by

Fy(t) : =f7 6(5)f (5,7(), 7 (s)) ds

where the Green’s function G(t, s) is given by

(t—a)(b— =)

Gts)= [-E2E22 act<s<b,
(e—a)ib—g
= -%ﬁﬁsgtsb.
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By the properties of the Green’s function, the fixed points of F are the classical solutions of

(3.1). der an appropriate local Lipschitz condition on f, we will use the nonlinear alternative
for contractive maps to establish that F restricted to the closure of a suitable open set U <
C'[a, b] is contractive and has a fixed point (in fact a unique fixed point) in U. Hence (3.1)

has a unique solution in U.
To this end we assume that f satisfies the following local Lipschitz condition:
(3.3) there are a subset D € R? and constants Kg and K
such that f restricted to [a, b] x D satisfies
Ity y) — f(t, 2, 2) < Koly — z| + K1ly' = Z].
Define a modified maximum norm on C'[a, b] by
y' = KolylotKaly'lo where [ylo =sup ly()]and [y’lo= sup [y’ (t)l.
te[a,b] te[a,b]

For functions y and z whose values and derivative values lie in the region where f is locally

Lipschitz, we have

I(Fy—F)(®)| = Iff G(t,s)f (SJ y(s)y (5}) ds —f(s, z(5), Z' (5))] ds|

(b—a)?

< == ly-2I

since

max f:' G(t,s)ds = max Lb—r}:r—b} =.~b_;3,‘

te[a,b] te[a,b]

Thus

(B—a)?

|Fy — Fzo < 2

lly* =2’
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for functions y and z whose values and derivative values lie in the region where f is locally

Lipschitz. Likewise

(b—a)

-
r

I(Fy =F2) o< ly’ =z

for functions y and z whose values and derivative values lie in the region where f is locally

Lipschitz, since

max f:" Gt(t,s)ds = max b_ﬂb__:}_ B :""":“} te[a,b]
Consequently
(b—a)? (b—a)
B4) IFy ~Fa| < [ke—— +ki—— ]

for functions y and z whose values and derivative values lie in the region
where f is locally Lipschitz. This inequality and Theorem 3.2 enable us
to establish the following existence and uniqueness principle for (3.1).
Theorem 3.4 Let f : [a, b] x R? > R be continuous and satisfy (3.3)

in a set D with constants KO and K1 such that

(35) ko ':b‘ﬁ:'z + kl ':b—ﬂ::' < 1

2 2z

is true. Suppose there is a boded open set of functions U € C'[a, b] with 0 € U such that
(3.6) u € U implies (u(t), u'(t)) € D for all t € [a, b]

And (3.7) y solves (3.2)A for some A € (0, 1) impliesy € dU hold. Then (3.1) has a unique

solution in U.
Proof Evidently F: U — C1[a, b] is contractive by (3.4) and (3.5).
Apply Theorem 3.2 and note that (A2) cannot occur because of (3.7).
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Remark 3.1 In many important applications, the function f is independent of y'; that is f = f(t,

y). In this case, a straightforward review of the reasoning given above shows that we can

regard F as

F: C[a, b] — CJa, b]. This leads to a useful variant of Theorem 3.4 in which D € R, all
referencetoy _and z_ is dropped in (3.3), and U € CJa, b].

Example 3.1 The boundary value problem
(3.8) y"(t{z Y0 te|o, 1],

y(0) =y(1)=0

has a unique solution with maximum norm at most 1. We note that(3.8) models the steady
state temperature in a rod with temperature dependent internal heating. To establish the above

claim we apply Theorem 3.4 and Remark 3.1

with f = f(t, y) = —¢’. By the mean value theorem we have that

ly|<1land |z|<1imply [¢¥ — e’ <™V By —z|<ely -z

We take

D=[-1,1]and U :{y € C[0, 1] : |y|0 = sup ly(t)| <1 }
te[0,1]

in Theorem 3.4. Then

Suppose that y solves
(3.9)r { y" (1) = -2’0, t € [0, 1],

y(0)=y(1)=0

for some A € (0, 1). Then
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y() = -1 [, G(t,8)ey(s)ds

and therefore

ly(t)| < ;e forte [0, 1],
Yo <5 e

I1. CONCLUSION

Consequently |y|0 <1 and this implies that |y|0 #1 and therefore y € 0U. Now Theorem 3.4 implies that (3.8) has

a unique solution with norm at most 1.
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