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ABSTRACT 

It is concerned with continuation methods for contractive and non expansive maps. We show initially that the 

property of having a fixed point is invariant by homotopy for contractions. Using this result a nonlinear 

alternative of Leray–Schauder type is presented for contractive maps and subsequently generalized for 

nonexpansive maps. An application of the nonlinear alternative for contractions is demonstrated with a second 

order homogeneous Dirichlet problem. Fixed point theory for continuous, single valued maps in finite and 

infinite dimensional Banach spaces with a discrete boundary value problem. 

II. INTRODUCTION 

We begin this paper  by showing that the property of having a fixed point is invariant by homotopy for 

contractions. 

Let (X, d)  be a complete metric space and U an open subset of X. 

Definition 1.1 Let F : U → X and G : U → X be two contractions; 

here U denotes the closure of U in X.  

We say that F and G are homotopic 

if there exists H : U × [0, 1] → X with the following properties: 

(a) H(·, 0) = G and H(·, 1) = F; 

(b) x = H(x, t) for every x ∈ ∂U and t ∈ [0, 1] (here ∂U denotes the  boundary of U in X); 

(c) there exists α, 0 ≤ α < 1, such that d(H(x, t),H(y, t)) ≤ α d(x, y) 

      for every x, y ∈ U and t ∈ [0, 1]; 

(d) there exists M, M ≥ 0, such that d(H(x, t),H(x, s)) ≤  M |t − s| for 

      every x ∈ U and t, s ∈ [0, 1].  

Theorem 1.1 Let (X, d) be a complete metric space and U an open 

subset of X. Suppose that F : Ū→ X and G : Ū  → X are two homotopic 
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contractive maps and G has a fixed point in U. Then F has a fixed point in U. 

Proof Consider the set 

A = {λ ∈ [0, 1] : x = H(x, λ) for some x ∈ Ū } 

where H is a homotopy between F and G as described in Definition 3.1. 

Notice A is nonempty since G has a fixed point, that is, 0 ∈ A. We will 

show that A is both open and closed in [0, 1] and hence by connectedness 

we have that A = [0, 1]. As a result, F has a fixed point in U. 

We first show that A is closed in [0, 1]. To see this let 

                            {λn}∞  n=1     A with λn → λ  [0, 1] as n→∞. 

We must show that λ ∈ A. Since λn ∈ A for n = 1, 2, . . ., 

 there exists 

xn ∈ Ū with       xn = H(xn, λn). Also for n,m ∈ {1, 2, . . .} 

 we have 

d(xn, xm) = d(H(xn, λn),H(xm, λm)) 

                 ≤ d(H(xn, λn),H(xn, λm)) + d(H(xn, λm),H(xm, λm)) 

                 ≤ M|λn − λm| + αd(xn, xm), 

that is, 

d(xn, xm) ≤   |λn − λm|.                      

Since {λn} is a Cauchy sequence we have that {xn} is also a Cauchy sequence, and since X is 

complete there exists x ∈ U with          In addition, x = H(x, λ) since 

             d(xn,H(x, λ)) = d(H(xn, λn),H(x, λ)) 

                                   ≤ M |λn − λ| + αd(xn, x). 
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Thus λ ∈ A and A is closed in [0, 1]. 

Next we show that A is open in [0, 1]. Let λ0 ∈ A. Then there exists 

x0 ∈ U with x0 = H(x0, λ0). Fix ∈  > 0 such that 

∈ ≤      where r < dist(x0, ∂ U), 

and where dist(x0, ∂U) = inf{d(x0, x) : x ∈ ∂U }. Fix λ ∈ (λ0−∈, λ0+∈). 

Then for  x ∈ B(x0, r) = {x : d(x, x0) ≤ r}, 

                      d(x0,H(x, λ)) ≤ d(H(x0, λ0),H(x, λ0)) + d(H(x, λ0),H(x, λ)) 

                      ≤ αd(x0, x) +M|λ − λ0| 

                      ≤ αr + (1 − α)r = r. 

Thus for each fixed λ ∈ (λ0−∈, λ0 +∈), 

H(·, λ) : B(x0, r) → B(x0, r). 

We can now apply Theorem 1.1 (an argument based on Theorem 1.3 

could also be used) to deduce that H(·, λ) has a fixed point in Ū. Thus 

λ ∈ A for any λ ∈ (λ0−∈, λ0 +∈),and therefore A is open in [0, 1].we will assume that X is a 

Banach space. We now present a nonlinear alternative of Leray–Schauder type for 

contractive maps. 

Theorem 3.2 Suppose U is an open subset of a Banach space X, 0 ∈ U 

and F : Ū → X a contraction with F(Ū ) boded. Then either 

(A1) F has a fixed point in Ū, or 

(A2) there exist λ ∈ (0, 1) and u ∈ ∂ Ū with u = λ F(u) holds. 

Proof:- Assume (A2) does not hold and F has no fixed points on ∂U 

(otherwise we are finished). Then 
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u ≠ λF(u) for all u ∈ ∂ U and λ ∈ [0, 1]. 

Let H : Ū × [0, 1] → X be given by 

H(x, t) = tF (x), 

and let G be the zero map. Notice G has a fixed point in U (that is, 0 = G(0)) and F and G are 

two homotopic, contractive mappings. We can now apply Theorem 3.1 to deduce that there 

exists x ∈ U with  x = F(x), that is, (A1) occurs. It is natural to ask whether we can extend 

Theorem 3.2 to non expansive maps as Theorem 2.5 suggests. 

Theorem 3.3 Let U be a boded, open, convex subset of a iformly convex Banach space X, 

with 0 ∈ U and F : Ū → X a non expansive map. Then either 

(A1) F has a fixed point in U, or 

(A2) there exist λ ∈ (0, 1) and u ∈ ∂ Ū with u = λF(u) is true. 

Proof:- Assume (A2) does not hold. Consider for each n ∈ {2, 3, . . .}, the 

Mapping   :=(1 − )F : Ū → X. 

Notice that Fn is a contraction with contraction constant 1 − 1/n. Applying Theorem 3.2 to 

, we deduce that either Fn has a fixed point in U, or there exist λ ∈ (0, 1) and u ∈ ∂U with u 

= λ  (u).  

Suppose the latter is true, that is, there exist λ ∈ (0, 1) and u ∈ ∂U with u = λ  (u). 

Then 

u = λ(1 − ) F(u) = ηF(u) where 0 < η = λ(1 − )< 1 

– a contradiction since property (A2) does not occur. Consequently for each n ∈ {2, 3, . . .} 

we have that Fn has a fixed point  ∈ U. 

 A standard result (if E is a reflexive Banach space, then any norm boded sequence in E has a 

weakly convergent subsequence) implies (since U is closed, boded and convex – hence 

weakly closed) that there exist a subsequence S of integers and a u ∈ U with  ; u as n→∞ in 

S; here →; denotes weak convergence. 
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In addition since  = (1 − 1/n)F( ) we have 

 =   

                             ≤  

                              ≤ . 

Thus (I − F)( ) converges strongly to 0. The demiclosedness of I – F (see Exercise 2.8) 

implies that u = F(u), and as a result (A1) occurs. 

To illustrate how Theorem 3.2 can be applied in practice we turn our attention to the second 

order homogeneous Dirichlet problem,(3.1) 

y  = f(t, y, y ) for t ∈ [a, b],  

y(a) = y(b) = 0, 

where f : [a, b] × R
2
 → R is continuous. Associated with (3.1) we consider the following 

related family of problems: 

(3.2)λ 

y11 = λf (t, y, y
1
) for t ∈ [a, b], 

y(a) = y(b) = 0, 

for λ ∈ (0, 1). Define an operator F : C
1
[a, b] → C

1
[a, b] by 

Fy(t) : =  

where the Green’s function G(t, s) is given by 

G(t, s) = -   , a≤ t ≤ s ≤ b, 

          = -   , a≤ s ≤ t ≤ b. 
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By the properties of the Green’s function, the fixed points of F are the classical solutions of 

(3.1). der an appropriate local Lipschitz condition on f, we will use the nonlinear alternative 

for contractive maps to establish that F restricted to the closure of a suitable open set U ⊆ 

C
1
[a, b] is contractive and has a fixed point (in fact a unique fixed point) in Ū. Hence (3.1) 

has a unique solution in Ū. 

To this end we assume that f satisfies the following local Lipschitz condition: 

(3.3)    there are a subset D ⊆ R
2
 and constants K0 and K1  

                        such that f restricted to [a, b] × D satisfies 

                       |f(t, y, y ) − f(t, z, z )| ≤ K0|y − z| + K1|y  − z |. 

Define a modified maximum norm on C
1
[a, b] by 

y  = K0|y|0+K1|y |0 where |y|0 = sup      |y(t)| and |y 0 =  sup         |y  (t)|. 

                                                t∈[a,b]                           t∈[a,b] 

For functions y and z whose values and derivative values lie in the region where f is locally 

Lipschitz, we have 

|(Fy − Fz)(t)| = |  − f(s, z(s), z  (s))] ds| 

 

                  ≤  || y- z || 

since 

max     =  max         =  

t∈[a,b]                                 t∈[a,b] 

Thus 

|Fy − Fz|0 ≤   ||y  – z || 



 

18 | P a g e  
 

for functions y and z whose values and derivative values lie in the region where f is locally 

Lipschitz. Likewise 

|(Fy − Fz) |0 ≤   ||y  – z || 

for functions y and z whose values and derivative values lie in the region where f is locally 

Lipschitz, since 

max     =  max         = t∈[a,b]            

Consequently  

                      (3.4) ||Fy – Fz|| ≤  [k0 k1   ] 

 

for functions y and z whose values and derivative values lie in the region 

where f is locally Lipschitz. This inequality and Theorem 3.2 enable us 

to establish the following existence and uniqueness principle for (3.1). 

Theorem 3.4 Let f : [a, b] × R
2
 → R be continuous and satisfy (3.3) 

in a set D with constants K0 and K1 such that 

(3.5)       k0 k1    < 1 

 

is true. Suppose there is a boded open set of functions U ⊆ C
1
[a, b] with 0 ∈ U such that 

(3.6) u ∈ Ū implies (u(t), u (t)) ∈ D for all t ∈ [a, b] 

And  (3.7) y solves (3.2)λ for some λ ∈ (0, 1) implies y € ∂U    hold. Then (3.1) has a unique 

solution in Ū. 

Proof  Evidently F : Ū → C1[a, b] is contractive by (3.4) and (3.5). 

Apply Theorem 3.2 and note that (A2) cannot occur because of (3.7). 
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Remark 3.1 In many important applications, the function f is independent of y ; that is f = f(t, 

y). In this case, a straightforward review of the reasoning given above shows that we can 

regard F as 

F : C[a, b] → C[a, b]. This leads to a useful variant of Theorem 3.4 in which D ⊆ R, all 

reference to y_ and z_ is dropped in (3.3), and U ⊆ C[a, b]. 

Example 3.1 The boundary value problem 

(3.8)              y (t) = −e
y(t)

, t ∈ [0, 1], 

                                  y(0) = y(1) = 0 

 

has a unique solution with maximum norm at most 1. We note that(3.8) models the steady 

state temperature in a rod with temperature dependent internal heating. To establish the above 

claim we apply Theorem 3.4 and Remark 3.1 

with f = f(t, y) = −e
y
. By the mean value theorem we have that 

|y| ≤ 1 and |z| ≤ 1 imply |e
y
 − e

z
| ≤ e

max{y,z}
|y − z| ≤ e |y − z|. 

We take 

D = [−1, 1] and U =    y ∈ C[0, 1] : |y|0 = sup          |y(t)| < 1 

                                                                t∈[0,1] 

in Theorem 3.4. Then 

                                             =    < 1 

Suppose that y solves 

(3.9)λ     y  (t) = −λe
y(t)

, t ∈ [0, 1], 

              y(0) = y(1) = 0 

for some λ ∈ (0, 1). Then 
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                                      y(t) = −λ  

and therefore 

|y(t)| ≤  e
|y|0

 for t ∈ [0, 1], 

|y|0 ≤  e
|y|0

  

II. CONCLUSION 

Consequently |y|0 ≤ 1 and this implies that |y|0 ≠1 and therefore y € ∂U. Now Theorem 3.4 implies that (3.8) has 

a unique solution with norm at most 1. 
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