Vol. No.4, Issue No. 09, September 2016

www.ijates.com

CONTINUATION METHODS FOR CONTRACTIVE AND NON EXPANSIVE MAPPING (FUNCTION)

Dr. Yogesh Kumar¹, Mr. Shaikh Mohammed Sirajuddin Mohammed Salimuddin²

¹Associated Professor, Dept. of Mathematics, OPJS University, Churu, Rajeshtan ²Research scholar (In Mathematics), OPJS University, Churu, Rajeshtan

ABSTRACT

It is concerned with continuation methods for contractive and non expansive maps. We show initially that the property of having a fixed point is invariant by homotopy for contractions. Using this result a nonlinear alternative of Leray–Schauder type is presented for contractive maps and subsequently generalized for nonexpansive maps. An application of the nonlinear alternative for contractions is demonstrated with a second order homogeneous Dirichlet problem. Fixed point theory for continuous, single valued maps in finite and infinite dimensional Banach spaces with a discrete boundary value problem.

II. INTRODUCTION

We begin this paper by showing that the property of having a fixed point is invariant by homotopy for contractions.

Let (X, d) be a complete metric space and U an open subset of X.

Definition 1.1 Let $F: U \rightarrow X$ and $G: U \rightarrow X$ be two contractions;

here U denotes the closure of U in X.

We say that F and G are homotopic

if there exists $H:U\times [0,\,1]\to X$ with the following properties:

- (a) $H(\cdot, 0) = G$ and $H(\cdot, 1) = F$;
- (b) x = H(x, t) for every $x \in \partial U$ and $t \in [0, 1]$ (here ∂U denotes the boundary of U in X);
- (c) there exists α , $0 \le \alpha < 1$, such that $d(H(x, t), H(y, t)) \le \alpha d(x, y)$ for every $x, y \in U$ and $t \in [0, 1]$;
- (d) there exists M, $M \ge 0$, such that $d(H(x, t), H(x, s)) \le M |t s|$ for every $x \in U$ and $t, s \in [0, 1]$.

Theorem 1.1 Let (X, d) be a complete metric space and U an open subset of X. Suppose that $F: \overline{U} \to X$ and $G: \overline{U} \to X$ are two homotopic

Vol. No.4, Issue No. 09, September 2016

www.ijates.com

contractive maps and G has a fixed point in U. Then F has a fixed point in U.

Proof Consider the set

$$A = {\lambda \in [0, 1] : x = H(x, \lambda) \text{ for some } x \in \overline{U}}$$

where H is a homotopy between F and G as described in Definition 3.1.

Notice A is nonempty since G has a fixed point, that is, $0 \in A$. We will

show that A is both open and closed in [0, 1] and hence by connectedness

we have that A = [0, 1]. As a result, F has a fixed point in U.

We first show that A is closed in [0, 1]. To see this let

$$\{\lambda n\} \infty$$
 n=1 A with $\lambda n \to \lambda$ [0, 1] as $n \to \infty$.

We must show that $\lambda \in A$. Since $\lambda n \in A$ for n = 1, 2, ...,

there exists

$$xn \in \overline{U}$$
 with $xn = H(xn, \lambda n)$. Also for $n,m \in \{1, 2, ...\}$

we have

$$\begin{split} d(xn,xm) &= d(H(xn,\lambda n),\! H(xm,\lambda m)) \\ &\leq d(H(xn,\lambda n),\! H(xn,\lambda m)) + d(H(xn,\lambda m),\! H(xm,\lambda m)) \end{split}$$

 $\leq M|\lambda n - \lambda m| + \alpha d(xn, xm),$

that is,

$$d(xn, xm) \le \left(\frac{M}{1-\alpha}\right) |\lambda n - \lambda m|.$$

Since $\{\lambda n\}$ is a Cauchy sequence we have that $\{xn\}$ is also a Cauchy sequence, and since X is complete there exists $x \in U$ with $\lim_{n \to \infty} x_n = x$ In addition, $x = H(x, \lambda)$ since

$$d(xn,H(x,\lambda)) = d(H(xn,\lambda n),H(x,\lambda))$$

$$\leq M |\lambda n - \lambda| + \alpha d(xn,x).$$

ISSN 2348 - 7550

Vol. No.4, Issue No. 09, September 2016

www.ijates.com

Thus $\lambda \in A$ and A is closed in [0, 1].

1JatesISSN 2348 - 7550

Next we show that A is open in [0, 1]. Let $\lambda 0 \in A$. Then there exists

 $x0 \in U$ with $x0 = H(x0, \lambda 0)$. Fix $\epsilon > 0$ such that

$$\in \, \leq \frac{(\textbf{1}-\alpha)r}{\textbf{m}} \quad \text{ where } r < dist(x0,\, \partial \,\, U),$$

and where dist $(x0, \partial U) = \inf\{d(x0, x) : x \in \partial U \}$. Fix $\lambda \in (\lambda 0 - \epsilon, \lambda 0 + \epsilon)$.

Then for
$$\overline{x \in B(x0, r)} = \{x : d(x, x0) \le r\},$$

$$d(x0, H(x, \lambda)) \le d(H(x0, \lambda 0), H(x, \lambda 0)) + d(H(x, \lambda 0), H(x, \lambda))$$

$$\le \alpha d(x0, x) + M|\lambda - \lambda 0|$$

$$\underline{\qquad \leq \alpha r + (1 - \alpha)r = r}.$$

Thus for each fixed $\lambda \in (\lambda 0 - \epsilon, \lambda 0 + \epsilon)$,

$$H(\cdot, \lambda) : B(x0, r) \rightarrow B(x0, r).$$

We can now apply Theorem 1.1 (an argument based on Theorem 1.3

could also be used) to deduce that $H(\cdot, \lambda)$ has a fixed point in \bar{U} . Thus

 $\lambda \in A$ for any $\lambda \in (\lambda 0 - \in, \lambda 0 + \in)$, and therefore A is open in [0, 1].we will assume that X is a Banach space. We now present a nonlinear alternative of Leray–Schauder type for contractive maps.

Theorem 3.2 Suppose U is an open subset of a Banach space $X, 0 \in U$

and $F: \bar{U} \to X$ a contraction with $F(\bar{U})$ boded. Then either

(A1) F has a fixed point in \overline{U} , or

(A2) there exist $\lambda \in (0, 1)$ and $u \in \partial \bar{U}$ with $u = \lambda F(u)$ holds.

Proof:- Assume (A2) does not hold and F has no fixed points on ∂U

(otherwise we are finished). Then

Vol. No.4, Issue No. 09, September 2016

www.ijates.com

 $u \neq \lambda F(u)$ for all $u \in \partial U$ and $\lambda \in [0, 1]$.

Let $H : \overline{U} \times [0, 1] \to X$ be given by

$$H(x, t) = tF(x),$$

and let G be the zero map. Notice G has a fixed point in U (that is, 0 = G(0)) and F and G are two homotopic, contractive mappings. We can now apply Theorem 3.1 to deduce that there exists $x \in U$ with x = F(x), that is, (A1) occurs. It is natural to ask whether we can extend Theorem 3.2 to non expansive maps as Theorem 2.5 suggests.

Theorem 3.3 Let U be a boded, open, convex subset of a iformly convex Banach space X, with $0 \in U$ and $F : \overline{U} \to X$ a non expansive map. Then either

- (A1) F has a fixed point in U, or
- (A2) there exist $\lambda \in (0, 1)$ and $u \in \partial \bar{U}$ with $u = \lambda F(u)$ is true.

Proof:- Assume (A2) does not hold. Consider for each $n \in \{2, 3, ...\}$, the

Mapping
$$F_n := (1 - \frac{1}{n})F : \bar{U} \to X$$
.

Notice that Fn is a contraction with contraction constant 1 - 1/n. Applying Theorem 3.2 to F_n , we deduce that either Fn has a fixed point in U, or there exist $\lambda \in (0, 1)$ and $u \in \partial U$ with $u = \lambda F_n(u)$.

Suppose the latter is true, that is, there exist $\lambda \in (0, 1)$ and $u \in \partial U$ with $u = \lambda F_n(u)$.

Then

$$u = \lambda(1 - \frac{1}{n}) F(u) = \eta F(u) \text{ where } 0 < \eta = \lambda(1 - \frac{1}{n}) < 1$$

– a contradiction since property (A2) does not occur. Consequently for each $n \in \{2, 3, ...\}$ we have that Fn has a fixed point $\in U$.

A standard result (if E is a reflexive Banach space, then any norm boded sequence in E has a weakly convergent subsequence) implies (since U is closed, boded and convex – hence weakly closed) that there exist a subsequence S of integers and a $u \in U$ with ; u as $n \to \infty$ in S; here \to ; denotes weak convergence.

Vol. No.4, Issue No. 09, September 2016

www.ijates.com

In addition since $= (1 - 1/n)F(u_n)$ we have

ijates ISSN 2348 - 7550

$$\begin{split} \| (\mathbf{I} - \mathbf{F})(u_n) \| &= \frac{1}{n} \| \mathbf{F}(u_n) \| \\ &\leq \frac{1}{n} \| \mathbf{F}(u_n) - \mathbf{F}(0) \| + \| \mathbf{F}(0) \| \\ &\leq \frac{1}{n} \| (u_n) - \mathbf{F}(0) \|. \end{split}$$

Thus $(I - F)(u_n)$ converges strongly to 0. The demiclosedness of I - F (see Exercise 2.8) implies that u = F(u), and as a result (A1) occurs.

To illustrate how Theorem 3.2 can be applied in practice we turn our attention to the second order homogeneous Dirichlet problem,(3.1)

$$y'' = f(t, y, y')$$
 for $t \in [a, b]$,
 $y(a) = y(b) = 0$,

where $f : [a, b] \times \mathbb{R}^2 \to \mathbb{R}$ is continuous. Associated with (3.1) we consider the following related family of problems:

 $(3.2)\lambda$

$$y^{11} = Af(t, y, y^{1}) \text{ for } t \in [a, b],$$

 $y(a) = y(b) = 0,$

for $\lambda \in (0, 1)$. Define an operator $F : C^1[a, b] \to C^1[a, b]$ by

$$F_{y}(t) := \int_{a}^{b} G(t,s) f(s,y(s),y'(s)) ds$$

where the Green's function G(t, s) is given by

$$\begin{split} G(t,\,s) = & \left\{ \begin{array}{l} -\frac{(\mathsf{t}-\mathsf{a})(\mathsf{b}-\mathsf{s})}{\mathsf{b}-\mathsf{a}} \;\;,\; a \leq t \leq s \leq b, \\ \\ = & -\frac{(\mathsf{s}-\mathsf{a})(\mathsf{b}-\mathsf{s})}{\mathsf{b}-\mathsf{a}} \;\;,\; a \leq s \leq t \leq b. \end{array} \right. \end{split}$$

Vol. No.4, Issue No. 09, September 2016

www.ijates.com

SSN 2348 - 7550

By the properties of the Green's function, the fixed points of F are the classical solutions of (3.1). der an appropriate local Lipschitz condition on f, we will use the nonlinear alternative for contractive maps to establish that F restricted to the closure of a suitable open set $U \subseteq C^1[a, b]$ is contractive and has a fixed point (in fact a unique fixed point) in \bar{U} . Hence (3.1) has a unique solution in \bar{U} .

To this end we assume that f satisfies the following local Lipschitz condition:

$$\begin{cases} \text{there are a subset } D \subseteq R^2 \text{ and constants } K_0 \text{ and } K_1 \\ \\ \text{such that } f \text{ restricted to } [a,b] \times D \text{ satisfies} \\ \\ |f(t,y,y') - f(t,z,z')| \leq K_0 |y-z| + K1 |y'-z'|. \end{cases}$$

Define a modified maximum norm on C¹[a, b] by

$$y' = K_0 |y|_0 + K_1 |y'|_0$$
 where $|y|_0 = \sup |y(t)|$ and $|y'|_0 = \sup |y'(t)|$. $t \in [a,b]$

For functions y and z whose values and derivative values lie in the region where f is locally Lipschitz, we have

$$|(F_y - F_z)(t)| = |\int_a^b G(t,s)f(s,y(s),y'(s))ds - f(s,z(s),z'(s))| ds|$$

$$\leq \frac{(b-a)^2}{8} \parallel y-z' \parallel$$

since

max
$$\int_a^b G(t,s) ds = \max \frac{(b-t)(t-b)}{2} = \frac{(b-a)^2}{8}$$

$$t \in [a,b]$$
 $t \in [a,b]$

Thus

$$|F_y - F_z|_0 \le \frac{(b-a)^2}{8} ||y' - z'||$$

Vol. No.4, Issue No. 09, September 2016

www.ijates.com

Lipschitz. Likewise

SSN 2348 - 755

for functions y and z whose values and derivative values lie in the region where f is locally

$$|(F_y - F_z)|_0 \le \frac{(b-a)}{2} ||y' - z'||$$

for functions y and z whose values and derivative values lie in the region where f is locally Lipschitz, since

$$\max \int_{a}^{b} Gt(t,s) ds = \max \frac{(b-a)^{2} - (t-b)^{2}}{2(b-a)} = \frac{(b-a)}{2} t \in [a,b]$$

Consequently

$$(3.4) ||Fy - Fz|| \le \left[k_0 \frac{(b-a)^2}{8} + k_1 \frac{(b-a)}{2} \right]$$

for functions y and z whose values and derivative values lie in the region

where f is locally Lipschitz. This inequality and Theorem 3.2 enable us

to establish the following existence and uniqueness principle for (3.1).

Theorem 3.4 Let $f: [a, b] \times R^2 \rightarrow R$ be continuous and satisfy (3.3)

in a set D with constants K0 and K1 such that

(3.5)
$$k_0 \frac{(b-a)^2}{8} + k_1 \frac{(b-a)}{2} < 1$$

is true. Suppose there is a boded open set of functions $U \subseteq C^1[a, b]$ with $0 \in U$ such that

(3.6)
$$u \in \overline{U}$$
 implies $(u(t), u'(t)) \in D$ for all $t \in [a, b]$

And (3.7) y solves (3.2) λ for some $\lambda \in (0, 1)$ implies $y \in \partial U$ hold. Then (3.1) has a unique solution in \bar{U} .

Proof Evidently $F: \overline{U} \to C1[a, b]$ is contractive by (3.4) and (3.5).

Apply Theorem 3.2 and note that (A2) cannot occur because of (3.7).

Vol. No.4, Issue No. 09, September 2016

www.ijates.com

SSN 2348 - 7550

Remark 3.1 In many important applications, the function f is independent of y'; that is f = f(t, y). In this case, a straightforward review of the reasoning given above shows that we can regard F as

 $F: C[a, b] \to C[a, b]$. This leads to a useful variant of Theorem 3.4 in which $D \subseteq R$, all reference to y_a and z_b is dropped in (3.3), and $U \subseteq C[a, b]$.

Example 3.1 The boundary value problem

(3.8)
$$y''(t) = -e^{y(t)}, t \in [0, 1],$$
$$y(0) = y(1) = 0$$

has a unique solution with maximum norm at most 1. We note that (3.8) models the steady state temperature in a rod with temperature dependent internal heating. To establish the above claim we apply Theorem 3.4 and Remark 3.1

with $f = f(t, y) = -e^{y}$. By the mean value theorem we have that

$$|y| \leq 1 \text{ and } |z| \leq 1 \text{ imply } |e^y - e^z| \leq e^{max\{y,z\}} |y - z| \leq e \ |y - z|.$$

We take

$$D = [-1, 1] \text{ and } U = \left\{ y \in C[0, 1] : |y|0 = \sup |y(t)| < 1 \right\}$$

$$t \in [0, 1]$$

in Theorem 3.4. Then

$$\frac{ko}{8} = \frac{e}{8} < 1$$

Suppose that y solves

(3.9)
$$\lambda$$

$$\begin{cases} y''(t) = -\lambda e^{y(t)}, t \in [0, 1], \\ y(0) = y(1) = 0 \end{cases}$$

for some $\lambda \in (0, 1)$. Then

Vol. No.4, Issue No. 09, September 2016

www.ijates.com

$$y(t) = -\lambda \int_0^l G(t,s) ey(s) ds$$

and therefore

$$|y(t)| \le \frac{1}{8} e^{|y|0}$$
 for $t \in [0, 1]$,

$$|y|_0 \le \frac{1}{8} e^{|y|0}$$

II. CONCLUSION

Consequently $|y|0 \le 1$ and this implies that $|y|0 \ne 1$ and therefore $y \in \partial U$. Now Theorem 3.4 implies that (3.8) has a unique solution with norm at most 1.

REFERENCE

- [1] R. P. AGARWAL and D. O'REGAN, Difference equations in abstract spaces, J. Austral. Math. Soc. Ser. A, 64 (1998), 277–284.
- [2] R. P. AGARWAL and D. O'REGAN, A note on the existence of multiple fixed points for multi valued maps with application, J. Diff. Eqns, 160 (2000), 389–403.
- [3] C. D. ALIPRANTIS and K. C. BORDER, Infinite dimensional analysis, Springer-Verlag, 1994.
- [4] D. ALSPACH, A fixed point free nonexpansive map, Proc. Amer. Math. Soc., 82 (1981), 423–424.
- [5] M. ALTMAN, A fixed point theorem for completely continuous operators in Banach spaces, Bull. Acad. Polon. Sci., 3 (1955), 409–413.
- [6] H. AMANN, On the number of solutions of nonlinear equations in ordered Banach spaces,J. Funct. Anal., 14 (1973), 346–384.
- [7] H. AMANN, Fixed point problems and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620–709.
- [8] J. APPELL and M. P. PERA, Noncompactness principles in nonlinear operator approximation theory, Pacific J. Math., 115 (1984), 13–31.
- [9] J. P. AUBIN and A. CELLINA, Differential inclusions, Springer-Verlag, 1984.
- [10] J. P. AUBIN and I. EKELAND, Applied nonlinear analysis, John Wiley and Sons, 1984.
- [11] D. F. BAILEY, Some theorems on contractive mappings, J. London Math. Soc., 41 (1966), 101–106.
- [12] J. B. BAILLON and R. SCHOENBERG, Asymptotic normal structure and fixed points of non expansive mappings, Proc. Amer. Math. Soc., 81 (1981), 257–264.
- [13] J. BANAS and K. GOEBEL, Measures of noncompactness in Banach spaces, Marcel Dekker, 1980.