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ABSTRACT

In this paper, we consider the existence of coincidences and fixed points of non-expansive type conditions
satisfied by single valued maps and prove some fixed point theorems for non-expansive type single valued
mappings in 2-metric space.
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I INTRODUCTION

Fixed point theorems for contractive, non-expansive, contractive type and non-expansive type mappings provide
techniques for solving a variety of applied problems in mathematical and engineering sciences. It is one of the
reason that many authors have studied various classes of contractive type or non-expansive type mappings. If T

is such that for all z,¥ in X
(1.1) d(Tx,Ty) = Ad(x, y)

where 0 == 4 < 1, then T is said to be a contraction mapping. If T satisfies (1.1) with A =1, then T is called a

non-expansive mapping. If T satisfies any conditions of type

(1.2) d(Tx, Ty) < a,dx,y) + ayd (x,Tx) + a;d(y. Ty) + a,d (x. Ty) + azd(y, Tx)
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where a; (i = 1.2,3.4.3]) are nonnegative real numbers such that a; + a; + a; + a, + a; < 1. then T is said to
be a contractive type mapping. If T satisfies (1.2) with @y + @; + a3 + a4 + @z = 1, then T is said to be a non-

expansive type mapping. Similar terminology is used for multi-valued mappings.

Bogin [3] proved the following result:

Theorem 1.1 Let X be a nonempty complete metric space and T: X — X a mapping satisfying
(1.3) d(Tx, Ty} < adlx,v) + bld(x. Tx) +dy. Ty)] + cld(x, Ty) + dly. Tx)]
where o = 0.5 = 0,¢ = 0D and

(1.4) e+2b+2c=1

Then T has a unique fixed point.

This result was generalized by Rhoades [19] and Ciric [6,7]. Iseki [13] studied a family of commuting
mappings T3, T5.... T, which satisfy (1.3) with @ = 0,5 = 0,c = 0 and & + 2b + 2c = 1. For Banach spaces the
famous is Gregus’s Fixed Point Theorem [11] for non-expansive type single-valued mappings, which satisfy
(1.3) with ¢ = 0.a < 1. Ciric [6] introduced and investigated a new class of self-mappings T on X which satisfy
an inequality of type (1.3) with & = 0 and still have a fixed point. Also proved that by an example if the
mapping T satisfies (1.3) with & = 0 and if @ and ¢ are such that (1.4) holds, then T need not have a fixed point.
Therefore, a contractive condition for T , which shall guarantee a fixed point of T in the case & =0 and

& + 2c = 1, must be stricter then (1.3).

The concept of 2-metric space is a natural generalization of the classical one of metric space. It has been
investigated, initially, by Gahler and has been developed extensively by Gahler and many other mathematicians
[8-10]. The topology induced by 2-metric space is called 2-metric topology, which is generated by the set of all
open spheres with two centers. Iseki [12] studied the fixed point theorems in 2-metric spaces. A number of fixed
point theorems has been proved for 2-metric spaces. Liu and Zhang [15] proved a few necessary and sufficient
conditions for the existence of a common fixed point of a pair of mappings in 2-metric spaces. These results
have generalized and improved by a number of mathematicians. Singh, Adiga and Giniswami [20] proved a

fixed point theorem in 2-metric spaces for non-expansive type mappings.
We recall the following definitions and results which can be found in [8].

Definition 2.1 (see [8]) Let X be a nonempty set. A real valued function & on X? is said to a 2-metric if, for all

xv.zu € X, the following conditions hold:

(1) To each pair of distinct points x.¥ in X, there exists a point z € X such that d(x,y.z) = 0;
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(2) dlx.v.z) =0 if at least two of x.v. z are equal:
@) dixy.z) =d(xzy) =dly.xz) = d(yzx) =d(zxy) = d(zy x)
(@) dlx,y.z) =d(x,yuw) +dlx, u,z) + dlu, y, 2).

Then (X, &) is called a 2-metric space which will be sometimes denoted by X if there is no confusion. Every
member x € X is called a point in X. Geometrically a 2-metric d(x.v. )} represents the area of a triangle

with vertices x,¥ and =.

Definition 2.2 A sequence {x,} in a 2-metric space (X.d) is said to be convergent to a pointx € X | if

limy e dxpx,u) =0 forallu € X.

Definition 2.3 A sequence {x,} in a 2-metric space (X.d) is said to be Cauchy sequence if for all z € X.

limy o d(x % 2) = 0.

Definition 2.4 A sequence {x,} in a 2-metric space (X.d) is said to be complete if every Cauchy sequence in X

is convergent.

Definition 2.5 (see [16]) Let £ and T be mappings from a 2-metric space (X.d) into itself. The pair (f. T} is
said to be compatible pair (co. p.) if for all u € X, limy, .. d(fTx,. Tfx,u) =0 whenever {x,} is a sequence

in X such that [imy, . fx, = limy, . Tx, = p forsome p € X.

Definition 2.6 (see [16]) Let f and T be mappings from a 2-metric space (X.d) into itself. The pair (f.T) is

said to be weakly compatible pair (w. co. p.) if fx = Tx (for some x € X) implies fTx = Tfx,

Definition 2.7 (see [16]) Let f and T be mappings from a 2-metric space (X.d} into itself. The pair (f.T) is
said to be compatible of type (A) if

limy e (T fx . ffxpw) = limy o d{fTx, TTxu) =0
for all u € X, whenever {x,} is a sequence in X such that lim, . Sx, = lim,_.Tx, = p for some p € X.

Definition 2.8 (see [16]) Let f and T be mappings from a 2-metric space (X.d) into itself. The pair (f. T} is
said to be weakly compatible of type (A) if

limy . d(fTx . TTx . 2) <limy, . d(Tfx,. TTx,.2)

and

limy e @(Tfx . ffxn.2) < limy . d(fTx,. ffx,. 2)
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for all z € X, whenever {x,} is a sequence in X such that lim, . 5x, = lim, ... Tx, = t for some t € X.

Example: 2.9 (see [17]) Define d on [0.1] x [0,1] = [0.1] by d(x, v.z) = min{p(x, ¥}, ply. 2). plz. x)}, where
g is a usual metric on [0.1]. Then it is easy to see that d is a 2-metric on [0.1]. Define f.T:[0.1] — [0.1] by

fx =$ and lf'x=J_—r . Choose a sequence {x,} in [0.1] such that converges to zero in [0.1] i.e.

x, = 0e[01]asn ==, Thenforallu € X,

limp e d(fToy  Tfog u) = '[imr!—:xd(f (ITT)*T(I_T:I*H)

2 1+,

(Fz) (2=
s Lk vidry
= E.,mﬂ_,xd 1+ in'-l.- 2 U
vz d
x x
= lim d( £ —= u]
B Y T

s - Xn Xm X X
= .[;mﬂ_,xmm{_.-:{_ N \I)_._ﬂ (_. \I,u),_.-:.v (u,_—)}
2+xy 2li+ag) 2(1+x,) I+xy

x x
= lim .-:.v(—" —= )
= e P s a2 1exy)

1 1.|_

= iy e X |—— - =
Pem e, 2(iex,)

Thus, €(fTxn Tfxy u) =0, as n = 4= when x, = 0 X asn — +=. Hence (f.T) is a co. p. In view of

Proposition 2.4 of [18], every pair of compatible mappings of type (A) is weakly compatible mappings of type
(A) whereas in view of Proposition 2.9 of [18], every pair of compatible mappings of type (A) is weakly

compatible pair.

In this paper, we prove Ciric [6] type common fixed point theorems under non-expansive type conditions in the

setting of 2-metric spaces. We shall investigate a class of self-mappings T. f on X which satisfy the following

non-expansive type condition:

(15) d(Tx, Ty.w) < alx,y) max{d(fx, fy,w),d(fx, Tx,w.d(fy. Ty.u), - [Mx, .1 + mCx,y,0])

4+l y) (MG, v, w) + hm(x, y, ul]
for all =, v.u € X, where
Mx,yu) =max{d(fx, Ty, w).d(fy, Tx.u}

mx, v, u) = min{d (fx, Ty, w),d(fy, Tx. ul}
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(1.6) D<h<lalx.y) =0, f=inflelr.y) :x.yE X} =0

(1.7) supy yex(ale,y) +2c0ey) ) = 1.

I MAIN RESULT

Now, we give our main results.

Theorem 2.1 Let (X, d7) be a 2-metric space, T. f are self maps of X satisfying condition (1.5), where & and ¢
satisfying (1.6) and (1.7) with T(X) € f{X) and either (a) X is complete and f is surjective; or (b) X is
complete, f is continuous and T, f are compatible; or (c) f{X7} is complete; or (d) T( X} is complete. Then f and
T have a coincidence point in X. Further, the coincidence value is unique, i.e. f# = fg whenever fp = Tp

and fg = Tq.(p.g € X)

Proof Let x, € X. We construct two sequences {x,} and {3} as follows: Since T(X) € f(X), choose x, so
thaty, = fx; = Txy In general, choose x,,.; SO that ¥,y = fxn.y =Tx,. n € M. For simplicity, we set

dy () = dlw,. v,,..u) forall u € X and n € N U {0}. Obviously, d,(y,) = 0=d,(v,.,)¥neNuU0}

First, we claim that dy, (3, .2) = 0. On the contrary, suppose that d (¥, ..) # 0.% n € N U {0}. Applying (1.5),

we have
(2.1) di’!{yﬂ +::| = d{}’w}’ﬂ +1: ¥n +::] = d{rxi’!-'rxi’!+l-'}"i’!:]

= ﬂ'mm{d{fxﬂfoﬂ+1J}’ﬂ]J d{fxi"!-'rxi’!-'yﬂ:]-'d{fxﬂ+l-'rxﬂ+l-'yﬂ:]

,% [*M{xwxrwld"n:] + M{xﬂan+1J}’ﬂ]]} +E[Mr|:xr!*xn+l*yn:] +h m{InJIﬂ+1J}’n]]

= amax{d (. ¥n 1.¥n) 800 Yar1o Yo 8011 sz Yo
2 MG + M%)} + €M Gz 30) + h MG % 1 ¥n)]
where a and ¢ are evaluated at (x 2.4 ).
Since
Mm% X1 ¥) = minld(fxn, T, 190 ), dif 20,0, T, )3
= min{d (¥, Y2 Y0 @001 Vo1 903 = 0
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And
MGy, gy ) = maxdd(foey, T, oy ) d0f 2y, 0 Ty )3
= max{d(yn Yoz ¥ A0 Ve i = 0.
Hence from (2.1), we have
G Wnaz) = ady (o)
From (1.6), we have
(2.2) A (Wpsz) = 0.

We shall prove that {d,, () }HENH[U; is a non-increasing sequence in B*. For all u € X, on the contrary, assume

that d,,, () = d, (). Again applying (1.5), we have
(2.3) Ii'zr!+1.|:"'-'[] = d{}'nH.J.YnH!J“] = |:"'1'IH"-":r:JT*"'ﬂH.JH:I

< amax{d(fx,. frn, .. d(fxn Txp.w.d(fxy, . Ty, 0

MGt +m G Xy 1]+ M Gy g ) + hmrg 2, 0]

= amar {dp), dp ), s @) MCr xp 1) + M xn,10]]

+elMxpx g, w0 + hmxgx,,,u]
where a and ¢ are evaluated at (x,,x,.4 ).
Since
mlx,, 2, w) =minld(fx, Tx,, ), d(fx,,  Tr,uw}
= min{d(yn. Yo w0 p, Vpap Wl = 0
Mxpxp,w = max{d(fx, Tx,, 0, dfx, . Tx,0}
= max{d (. Yz w800 410 ¥4 g WD
= dlyn. ¥ 2ot

Then from (2.2), we have
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M2 g0u) = dlyy, Vg w
< (. Vs ¥ e) + A0 s ) + A0 Yo ine )
< 2dp,, (W)
The inequality (2.3) gives
dp.qy () = (@ + 260 d,, ()

a contradiction. Thus, our supposition that €. () = d,(u) was wrong. Therefore {d,, () },enye is a non-

increasing sequence of non-negative real numbers. Therefore, for all = we have
(2.4) Aoy s ) < dplud.
Now, we shall prove that for any n.m € M, d, (3, ) = 0.
Letn.m € M and if n = m and u = . then from (2.4), we have
(2.5) OO < dp_y ) = o =dp ) = 0.
If n =2 m, then from (2.5), we have
dn i) = A0 ¥ 210 ¥m)
= @0 Y s0¥m-t) + 800 ¥ V) + 8000V 40 Vi)
=d, (v )+ dp )+ d O sy)
=dpyp_y) =d,yp_z) = =d 3,0 =0.
Thus for any n.m € H,
(2.6) dplym) =0

Next we shall prove that d{yl-,yj-,yﬁ} =0 for all i.j. k€ M. Without loss of generality, we may assume

that i = j, it follows that
d(veypa) < dlve v ¥a) + d0n ¥ien ) + di 4077 9%)
= d;(v;) +d:On) + 0o e0 35 3%)
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= d(¥is 0¥ 2%)
Similarly,
(v ooy ) < d(3an ;)
Inductively, we have
2.7) d(yi vy ) = dlyjoe ) = dilw) = 0
We claim that lim,,_,.. d,, () = 0.
Applying (1.5), we have
(28) dlyy_y.Txpuw) =dTx, . Tx,.u)
< amax{d(fx, o frpw,d(fx, 2. Tx, o), d{fx,. Tx,w
3 MGy ) +m g 2]} + €lM o) + hm (.00
= amax{dy, _3.3n. W, d0_2.9n_ 11w, dn. Yup )

MGy x) +m g, ] } 4 oM Cepy_go ) 4 hm g,

where & and ¢ are evaluated at (x,,_5.x,).
Since by using (2.4), (2.5) and (2.6), we have
AWz Vo) £ a2 ¥ V- + Al 200w + a0 3w
< dy_oly,) +dp_ o ) + dyy_y ()
= 2dy_o(w)
AV Vns oW = A0 2.0V + 800 oy g +dl Zpyh w0
< dlyn_2¥ns0¥n o) + a2 + 800 g Ve ) + @0 gy w)
+d (¥ Vg pp0 W)

= dp_p () + dp_y o) + d, )
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< 3d,_, (u)
mlx,_oxpuw) =minld(fr,_ o Tepu). d(Fx, Tx,_ou)}t
= min{d(Yn_2 ¥n+1o ) d (Vs Yo_po u)}
= min{3d,_, (). d,_, ()}
=d,_,w
Mxy q.xpuw) = max{d(fr, . Txpu), difx, Tx,_su)}
= max{d(¥n_2. ¥ns1o ) (¥ Yo g, u)}
< max{3d,_,(w.d,_, (W} = 3d,_,
Using above all inequalities and (1.7), the inequality (2.8) gives
(29)  d0n-g¥nsn ) < amax{2dy o (), dy_; 00, dn ), S [3d,_2 () + dy_y ()]}
+cl3d, ;) + hd,_, (u)]
< [2a +c(3 + W)]d,_, )
=[2 -1 — W)d,_,(w
Again from (1.5), we have
(210) Ay ynir ) = dTxy_ Txpu

5 ﬂmﬂ\x{d{fxﬂ_l.lfxﬂ.llﬂ; d{fxr!_j_.lrxr!_l.ll‘].l d{fxr!.l‘-rxﬂ.liﬂ
J% [J-H{xr!_j_.lxr!.llﬂ + m{xﬂ_j_.lxr!.ll‘]]} + C[J-H{xr!_j_.lxr!.ll‘] + hm{xr!_j_.lxr!.l'u]]
= amax{d(y, _y.ynw. d0yn_s.yn.0 Ay Ypopo )

MGt %) + M2 ]] + DM G %) + G 3,0

where @ and ¢ are evaluated at (x,_.x,).

Since
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mx,_yxp.w =minfd(fr, . Trgu), d(fx. Txp_y.u)}
= min{d(¥n—_1. Yo+ 1, 8 80 Yo w)} = 0
Mx, q.xpuw) = max{d(fr, . Txpu), difx, Tx,_ . u)}
= max{d (V1. Y10 1), G0 Yoo 1w}
= d':}’n —1+¥n +,_,u]
Using (2.4) and (2.9), the inequality (2.10) gives
do) < ad,_ ) +cdly_ w0
adyou) +c[2-c(1 - hld,_;(u
=[1-¢c*11 - nld,_
Hence
dou) = [1— 21— h)ld,_, ()

Proceeding in this manner, we obtain

(2.11) dp() = (1 - %1 —n) }E-cz,_\{aa

jjates
ISSN 2348 - 7550

where [—] stands for the greatest integer not exceeding —. Since § = infic(x,v):x,y € X} = 0 and h € (0,1),

n
which implies that

(2.12) lim,_.d, =0

Now, we prove that {¥,} is Cauchy. Suppose to the contrary, that {y,} is not a Cauchy sequence in X. Then for

every € = 0, there exists u € X and strictly increasing sequences {ml}. {n;} of positive integers such that

my = = kwith

(213) d':}"mi:* j"i‘!ic-'u:] e

Without loss of generality, we can suppose that also

(2.14) my =N, =k, d{}-‘mk,_‘}-‘ﬂk,ﬂ:] = £, db"i’!i:’}‘mic—:’u} = £
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From (2.14) and the tetrahedral inequality (that holds for a 2-metric space), we have
(2.15) & = dl Y, Vnp 1)

< AV Vg Vg —2) + GV Vimg —28) + AV — 20V 20)

= d&m;:—wyn;yu} + d&mksj’nksj’mk—z} + d@’mk—p}’mk—zs“}

+f":{3“my}’m;c—1: u) + d{J’mEJTmE—zJTmE—L}

< &+ d(Vmg Vg Vimg—2) + G2 + g 1 () + di 2 (30, )
On letting k = +==in (2.15) and using (2.2), (2.7), (2.12), we get

(2.16) ity yoe @Yy Yoy ut) = €

It follows from (2.14) that
0 < (¥ Vg ) — Ay Yrmye—2.0)
= A0y Yy -20) + @m0 Vmy ) + 0y Yomgs Yme—2) — @0y Vim —200)
= d(m—2: Vg ) + A0 Yy Vg —2)
< Ay (Vg ) + Aoy 2 ) + g1 ) + Ay Vg iy, —2)
On making k& — +=, we immediately obtain that:

(2.17) ity yoe @Yy Vi tt) =€

Note that
ld (g Ymg—1:) — A0y o Vimy ) | S A3 () + s )
ld(rngs s Vg ) — @0y Vi, )| < i G + i, (i, )
ld (Ovmy s Yimg—10 ) — 800, 0¥y )| = i, @) + s ()

+dmk—1{u] +drzk{-ym;:—1.}
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On letting & — +2=, in these inequalities and by using inequalities (2.2), (2.7), (2.12), (2.15) and (2.17), we

obtain;
(2.18) limy db“nyym;:—r “} =& limy 4z d{ynkﬂs ym;;*“} =&

limy_m db’nkﬂs Vemp -1 “} =&

Now, using (1.5), we have
(2.19)  dlymy Vnperou) = d(Topy_y Ty u)
< amax{d(fam, . forn ) d(fom s T _gu), d(fay, Tag, u)
My x o) + (% gy X m10) ]}
+e[M{xpy g xnt0) + hmxp yxn,.u)]
= amax{d(ym,_1 g ) (Vg -1V 1). A (m Ve r. )
,E[M{xmk_l,xﬂk,u} + M2y g7y u) ]}
+e[M (g te) + hm (g2 0]
where a and ¢ are evaluated at (x,,, . %, ) and
%y g% ott) = min{d(Fx 0 T ) A(F X T g0 u)}
= min{d (¥m,—1. Vg 11 %) GOy Vimg 200}
M (%1 %ny 1) = max{@(f 2,y T ), 8 (F2n, Ty )}

= max{d(Vmy_ 1. Vg + 10U A (Vg oV, 20}

On letting k& — +== in (2.19), using (2.12), (2.16) and (2.18), we have
£ = o max {EJ U;U;% [e+ E]} + cle + hel

=(a+c(l +h))e
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=(1-cll —n)e

This is a contradiction, since 8 = infic(x,v):x,y € X} =0 and k € (0.1). Thus, our supposition was wrong

and therefore, {3} is a Cauchy Sequence in X.

For cases (a) and (b) suppose that X is complete. Then Cauchy sequence {3, will converge to a point z in X

and then fx, = pand Tx, = p asn — +02,
Case (a): Suppose that f is surjective. Then there exists a point z in X such that g = fz.
From (1.5), we have
(2.20) d(fz, Tzw) = d(fz.Tz ¥y o) + d(fz, 9 000 + d0yy 0. Tz u)
= d(fz. 0w +d(fz.Tz 3,0 + d(Tx, Tz,u)

= d(fz.0n ) + 002 T2 )
+amax {d(fon fz,0,d(f 5 Tag ), d(f2, Tz, 0,2 Mz + mlxp 2,01

+olMlxy.z,w) + hmlxgz,ul]
Since
lim, . M{x,.zuw) = lim,,, . max{d(fx,. Tz, w), (fz, Tx.ul)}
= dlfz. Tz, u)
and
lim,_, . mix,z,u = lim,_, min{d(fx,. Tz,w, (fz.Tx,w}
=0,
Taking limit n — +c2 in the inequality (2.20), we have

d(fz,Tz,u) < sup (a + c)d(fz,Tz,uw) < d{fz.Tz,uw

X yEX

implies that fz =Tz =p.
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Case (b): Suppose f is continuous. Then since lim, ... ¥, =p. we have lim,_... fw, = fp and then

limy .. ffxy= fp. Also f and T are compatible and lim,_. . fay =limy ., Txy =limy . ¥y =

Hence
(2.21) Jim d (fTxpTfxpu) =0
Note that

d{ffxmrfxmﬂ] = d{ffxmrfxwfrxr:]‘l' d(ffxryfrxm“] + d(foE,fon,?.{]
= d(ffxn Tfxn fTx )+ diffxn. ffrg,uw + d(fTay, T,

On taking limit n — +22 and using (2.21), we have lim d{ffx,.Tfx,u) = 0. Since limy_. .. ffx, = fp. it
M=+

follows that lim,,_,, .. Tfx, = fp.
Applying (1.5) again, we have
(2.22) d(fp. Tp.w) < d(fp.Tp. fyn.) +d(fp. fyp.ow +d(fy, .. Tp w
< d(fp. Tp., fyn+) + d(fp. f¥n..w +d(Tp. fTxp,w
= d{fp. Tp. fynsdd + d(fp. fn, o w) +d(Tp, fTxy Tfxy)
+d(Tp. Tfxpu) + d(Tfx,. fTx,.u
= dlfp.Tp. frn 0 +d(fp.fyp.ew + dTp. fTx, . Tfx,)
+d(Tfxy, fTxpw + amax{d(fp. ffx,w). d(fp. Tp.w), d(ffx, Tfx,.u
S IMGp, frp) +mp. frn ]} + MG, fr, ) + b mlp, fr,u0)]
Note that
limyp ., Mp, fxpu) = im,, max{d (fp, Tfx.w), (Ffx, Tp. w}
= limy_,, . max{d (fp, Tfxpw), (ff 2, Tp, w}
= difp. Tp.w

and
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lim,_,.mp, fx,.u) =lim,_.,_ min{d(fp, Tfx ), (ffx,.Tp, u)}
= lim,,_., . min{d(fp, Tfx ), (ff 2, Tp, w}
=0
On letting n — +o2 in the inequality (2.22), we have

(2.23) d(fp.Tp.u) < sup (a + c)d(fp. Tp.uw

xyex
implies that fp =Tp.

Case (c): Inthiscase p € f(X). Letz € f~*(p). Thenp = f z and the proof is complete by case (a).
Case (d): Inthiscase ¢ € T{(X} € f(X) and the proof is complete by case (c).

Finally, we shall prove that f and T have at most one coincidence point. On the contrary, suppose that f and T

have two coincidence points ¢ and g. Then from (1.5) with @ and & evaluated at (. g}, we have
(224)  dTp.Tq.w) < amax {d(fp.fq.).d(fp.Tp.w).d(fq.Tq. .2 [Mp.q.2) + m(p. g1}

+c[Mp.g.u) + hmip,g.u)]
=la+c( + 1] d(Tp. Tg, w)
because
Mip.q.u) = max{d(fp.Tq.w.d(fq.Tp.w}
= d(Tq.Tp u)
mip.q,w) = minld (fp.Tq.w,d{fq. Tp.w)}
= d(Tq,Tp, u)
Hence by (1.7),
(2.25) Tp.Tg.w =1 —ecll — W] d(Tp.Tq.w)

implying Tp = Tq by (1.6) and hence fp = fg.
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Corollary 2.2 Let (X.d7) be a complete 2-metric space and T is self mapping of X satisfying (1.5) with f = I,
the identity map on X, where h = 1, a and b satisfying (1.6) and (1.7). Then T has a unique fixed point and at

this fixed point T is continuous.

Proof The existence and uniqueness of the fixed point comes from Theorem 2.1 by setting f = I. To prove

continuity, let {y,} © X with lim,_.., . ¥, = . p the unique fixed point of T.

We apply inequality (1.6), where &, ¢ are evaluating at {¥y. z7).

(2.26) ATy Tp.) < amax {d(y,p.1). i Ty, dp, Tp, ), 2 My, p.) +my,p.10)1}
+clMy,, p,w) + my,, p,w]
< a(dy. p.uw) + dp. Ty ) + eld(p. Ty u) + dly. p.ad]
=(a+c)dly.pw) + (a+ c)d(p. Ty, u)
=01 -c) diyp.p.w) + 1 — dd(p. Ty u)

Hence

(2.27) ATy Tpw) = — B) dlyy.p.wd + (1 — fld(p, Ty u)

Since 8 = inficlx,v) : x.y € X} = 0. Hence we get
1
(2.28) ATy Tp.w) = (5-1) dlypp)

Taking the limit as n — +2 yields

limp . Tyn =Tp.
Therefore T is continuous at .
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