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ABSTRACT 

In this paper, we consider the existence of coincidences and fixed points of non-expansive type conditions 

satisfied by single valued maps and prove some fixed point theorems for non-expansive type single valued 

mappings in 2-metric space. 
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I INTRODUCTION 

Fixed point theorems for contractive, non-expansive, contractive type and non-expansive type mappings provide 

techniques for solving a variety of applied problems in mathematical and engineering sciences. It is one of the 

reason that many authors have studied various classes of contractive type or non-expansive type mappings. If  

is such that for all  in  

(1.1)                                                                                                                     

where  then  is said to be a contraction mapping. If  satisfies (1.1) with  then  is called a 

non-expansive mapping. If  satisfies any conditions of type 

(1.2)                                  
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where  are nonnegative real numbers such that  then T is said to 

be a contractive type mapping. If  satisfies (1.2) with  then T is said to be a non-

expansive type mapping. Similar terminology is used for multi-valued mappings. 

Bogin [3] proved the following result: 

Theorem 1.1 Let  be a nonempty complete metric space and  a mapping satisfying 

(1.3)                                         

where  and 

(1.4)                                                                                                                                 

Then  has a unique fixed point. 

This result was generalized by Rhoades [19] and Ciric [6,7]. Iseki [13] studied a family of commuting 

mappings  which satisfy (1.3) with  and . For Banach spaces the 

famous is Gregus’s Fixed Point Theorem [11] for non-expansive type single-valued mappings, which satisfy 

(1.3) with . Ciric [6] introduced and investigated a new class of self-mappings  on  which satisfy 

an inequality of type (1.3) with   and still have a fixed point. Also proved that by an example if the 

mapping T satisfies (1.3) with  and if  and  are such that (1.4) holds, then  need not have a fixed point. 

Therefore, a contractive condition for  , which shall guarantee a fixed point of  in the case  and 

, must be stricter then (1.3).  

The concept of 2-metric space is a natural generalization of the classical one of metric space. It has been 

investigated, initially, by Gahler and has been developed extensively by Gahler and many other mathematicians 

[8-10]. The topology induced by 2-metric space is called 2-metric topology, which is generated by the set of all 

open spheres with two centers. Iseki [12] studied the fixed point theorems in 2-metric spaces. A number of fixed 

point theorems has been proved for 2-metric spaces. Liu and Zhang [15] proved a few necessary and sufficient 

conditions for the existence of a common fixed point of a pair of mappings in 2-metric spaces. These results 

have generalized and improved by a number of mathematicians. Singh, Adiga and Giniswami [20] proved a 

fixed point theorem in 2-metric spaces for non-expansive type mappings. 

We recall the following definitions and results which can be found in [8]. 

Definition 2.1 (see [8]) Let  be a nonempty set. A real valued function  on  is said to a 2-metric if, for all 

, the following conditions hold: 

(1) To each pair of distinct points  in , there exists a point  such that  
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(2)  if at least two of  are equal   

(3)  

(4) . 

Then  is called a 2-metric space which will be sometimes denoted by  if there is no confusion. Every 

member  is called a point in . Geometrically a 2-metric  represents the area of a triangle 

with vertices  and .  

Definition 2.2 A sequence  in a 2-metric space  is said to be convergent to a point  , if  

 for all  

Definition 2.3 A sequence  in a 2-metric space  is said to be Cauchy sequence if for all  

. 

Definition 2.4 A sequence  in a 2-metric space  is said to be complete if every Cauchy sequence in  

is convergent. 

Definition 2.5 (see [16]) Let  and  be mappings from a 2-metric space  into itself. The pair   is 

said to be compatible pair (co. p.) if for all   whenever  is a sequence 

in  such that   for some  

Definition 2.6 (see [16]) Let  and  be mappings from a 2-metric space  into itself. The pair   is 

said to be weakly compatible pair (w. co. p.) if  (for some ) implies . 

Definition 2.7 (see [16]) Let  and  be mappings from a 2-metric space  into itself. The pair is 

said to be compatible of type (A) if 

                                     

for all  whenever  is a sequence in  such that   for some  

Definition 2.8 (see [16]) Let  and  be mappings from a 2-metric space  into itself. The pair  is 

said to be weakly compatible of type (A) if 

                                 

and    

                                 



 
 

151 | P a g e  
 

for all  whenever  is a sequence in X such that   for some  

Example: 2.9 (see [17]) Define  on  by  where 

 is a usual metric on . Then it is easy to see that  is a 2-metric on . Define  by 

  and   . Choose a sequence  in  such that converges to zero in  i.e. 

 as . Then for all ,  

      

                                                   

                                                   

                                                   

                                                   

                                                  . 

Thus, , as  when  as . Hence  is a co. p. In view of 

Proposition 2.4 of [18], every pair of compatible mappings of type (A) is weakly compatible mappings of type 

(A) whereas in view of Proposition 2.9 of [18], every pair of compatible mappings of type (A) is weakly 

compatible pair. 

In this paper, we prove Ciric [6] type common fixed point theorems under non-expansive type conditions in the 

setting of 2-metric spaces. We shall investigate a class of self-mappings  on  which satisfy the following 

non-expansive type condition: 

(1.5)    ,   

                                                                                                            

for all  where  
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and  

(1.6)                                                                 

(1.7)                                                    .                                                    

II MAIN RESULT 

Now, we give our main results. 

Theorem 2.1 Let  be a 2-metric space,  are self maps of  satisfying condition (1.5), where  and  

satisfying (1.6) and (1.7) with  and either (a)  is complete and  is surjective; or (b)  is 

complete, is continuous and  are compatible; or (c)  is complete; or (d)  is complete. Then  and 

 have a coincidence point in . Further, the coincidence value is unique, i.e.  whenever  

and  

Proof Let . We construct two sequences  and  as follows: Since , choose  so 

that . In general, choose  so that . For simplicity, we set 

 for all  and . Obviously, . 

First, we claim that . On the contrary, suppose that . Applying (1.5), 

we have 

(2.1)          

                                  

                                  

                                 

                                                 

where  and  are evaluated at .  

Since 
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And 

                

                                          . 

Hence from (2.1), we have 

 

From (1.6), we have 

(2.2)                                                                                                                           

We shall prove that  is a non-increasing sequence in . For all , on the contrary, assume 

that . Again applying (1.5), we have 

(2.3)         

                               

                                                       

                               

                                                                              

where  and  are evaluated at .  

Since 

                

                                                              

                

                                         

                                       . 

Then from (2.2), we have 
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The inequality (2.3) gives 

                                      

a contradiction. Thus, our supposition that  was wrong. Therefore  is a non-

increasing sequence of non-negative real numbers. Therefore, for all  we have 

(2.4)                                                         .                                                                 

Now, we shall prove that for any  . 

Let  and if  and  then from (2.4), we have 

(2.5)                                         .                          

If  then from (2.5), we have 

                             

                                          

                                          

                                         . 

Thus for any  

(2.6)                                                                                                                      

Next we shall prove that  for all . Without loss of generality, we may assume 

that , it follows that 
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Similarly, 

                             

Inductively, we have 

(2.7)                                                                               

We claim that . 

Applying (1.5), we have 

(2.8)      

                                        

                                          

                                        

                                                                                                   

where  and  are evaluated at .  

Since by using (2.4), (2.5) and (2.6), we have 
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Using above all inequalities and (1.7), the inequality (2.8) gives 

 (2.9)      

                                           

                                          

                                                                                                     

Again from (1.5), we have 

(2.10)        

                                         

                                         

                                        

                                                                                                 

where  and  are evaluated at .  

Since 
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Using (2.4) and (2.9), the inequality (2.10) gives 

                             

                                        

                                        

Hence  

                                              

Proceeding in this manner, we obtain 

(2.11)                                                                                             

where  stands for the greatest integer not exceeding . Since  and  

which implies that  

(2.12)                                                   .                                                  

Now, we prove that  is Cauchy. Suppose to the contrary, that  is not a Cauchy sequence in . Then for 

every  there exists  and strictly increasing sequences   of positive integers such that 

 with  

(2.13)                                                                                                               

Without loss of generality, we can suppose that also 

(2.14)                                 ,                     
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From (2.14) and the tetrahedral inequality (that holds for a 2-metric space), we have 

(2.15)                

                             

                             

                             

                                       

On letting  in (2.15) and using (2.2), (2.7), (2.12), we get 

(2.16)                                                                                     

It follows from (2.14) that 

               

                  

                 

                 

On making , we immediately obtain that: 

(2.17)                                                                               

Note that 
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On letting , in these inequalities and by using inequalities (2.2), (2.7), (2.12), (2.15) and (2.17), we 

obtain; 

(2.18)                                  

                                                                                                       

Now, using (1.5), we have  

(2.19)      

                                            

                                          ,  

                                            

                                            

                                           ,  

                                                                         

where  and  are evaluated at  and 

             

                                          

            

                                          

On letting  in (2.19), using (2.12), (2.16) and (2.18), we have  
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This is a contradiction, since  and . Thus, our supposition was wrong 

and therefore,  is a Cauchy Sequence in .  

For cases (a) and (b) suppose that  is complete. Then Cauchy sequence  will converge to a point  in  

and then  and   as .  

Case (a): Suppose that  is surjective. Then there exists a point  in  such that . 

From (1.5), we have 

(2.20)   

                                 

                                 

                                  

                                                                                   

Since  

                

                                                   

and  

               

                                                .  

Taking limit  in the inequality (2.20), we have 

                                        

implies that  
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Case (b): Suppose  is continuous. Then since  we have  and then 

. Also  and  are compatible and . 

Hence 

(2.21)                                                                                       

Note that 

        

                                     

On taking limit and using (2.21), we have . Since  it 

follows that . 

Applying (1.5) again, we have 

(2.22)             

                                            

                                            

                                           

                                           

                                           

                                                                                   

Note that  

              

                                                   

                                                   

and 
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On letting in the inequality (2.22), we have 

(2.23)                              

implies that  

Case (c): In this case  Let . Then  and the proof is complete by case (a). 

Case (d): In this case  and the proof is complete by case (c). 

Finally, we shall prove that  and  have at most one coincidence point. On the contrary, suppose that  and  

have two coincidence points  and . Then from (1.5) with  and  evaluated at  we have 

(2.24)           

                                            

                                             

because 

                        

                                          

                          

                                          

Hence by (1.7),                                    

(2.25)                                           

implying   by (1.6) and hence . 
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Corollary 2.2 Let  be a complete 2-metric space and  is self mapping of  satisfying (1.5) with  

the identity map on  where   and  satisfying (1.6) and (1.7). Then  has a unique fixed point and at 

this fixed point  is continuous. 

Proof The existence and uniqueness of the fixed point comes from Theorem 2.1 by setting . To prove 

continuity, let  with    the unique fixed point of .  

We apply inequality (1.6), where  are evaluating at . 

(2.26)     

                                      

                                      

                                      

                                      

Hence  

(2.27)                         

Since . Hence we get 

 (2.28)                        

Taking the limit as  yields 

                                                

Therefore  is continuous at . 
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