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ABSTRACT  
In this paper, the concept of absorbing maps in fuzzy metric space has been introduced to prove common fixed 
point theorems. Our results extend, generalize, fuzzyify several fixed point theorems on metric spaces, Menger 
Probabilistic Metric spaces, Fuzzy metric spaces as well as the result of Singh et. al. [11] and many. We also 
cited an example in support of our result. 
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I. INTRODUCTION 
The concept of Fuzzy sets was initially investigated by Zadeh [13] as a new way to represent vagueness in 
everyday  life.  Subsequently, it was developed by many authors and used in various fields.  To use this concept 
in Topology and  Analysis, several researchers have defined Fuzzy metric space in various ways. In this paper 
we deal with the Fuzzy metric space defined by Kramosil and Michalek [8] and modified by George and  
Veeramani [4]. Recently, Grabiec [5] has proved fixed point results for Fuzzy metric space. In the sequel, Singh 
and Chauhan [10] introduced the concept of compatible mappings in Fuzzy metric space and proved the 
common fixed point theorem.  Jungck et. al. [6] introduced the concept of compatible maps of type (A) in 
metric space and proved fixed point theorems.  Cho [2, 3] introduced the concept of compatible maps of type 
() and compatible maps of type () in fuzzy metric space. In 2011, using the concept of compatible maps of 
type (A) and  type (), Singh et. al. [11, 12] proved fixed point theorems in a fuzzy metric space. In this paper, a 
fixed point theorem for six self maps has been established using the concept of absorbing maps. For the sake of 
completeness, we recall some definitions and known results in Fuzzy metric space.  
 

II. PRELIMINARIES 

2.1. Definition  [9]  A binary operation * : [0, 1] × [0, 1]  [0, 1] is called a t-norm  if   ([0, 1], *) is an abelian 
topological monoid with unit 1 such that    a * b   c *d   whenever   a   c   and   b   d   for   a, b, c, d  [0, 1]. 
Examples of  t-norms are   a * b = ab     and   a * b = min{a, b}.  
 
2.2. Definition.  [9]  The 3-tuple (X, M, *) is said to be a Fuzzy metric space if X is an arbitrary set, * is a 
continuous t-norm and M is a Fuzzy set in X2 × [0, ) satisfying the following conditions :  
    
for all  x, y, z  X   and  s, t > 0. 

(FM-1)  M(x, y, 0) = 0, 

(FM-2)  M(x, y, t) =1  for all t > 0  if and only if   x = y, 

(FM-3)  M (x, y, t) =  M (y, x, t), 

(FM-4)  M(x, y, t) * M(y, z, s)  M(x, z, t + s), 
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(FM-5)  M(x, y, .) : [0, )  [0, 1] is left continuous,   

(FM-6)  
t
lim


M(x, y, t) =1. 

Note that M(x, y, t) can be considered as the degree of nearness between x and y with respect to t.  We identify 
x = y with M(x, y, t) = 1  for all t > 0. The following example shows that every metric space induces a Fuzzy 
metric space. 

Example 2.1.  [9] Let (X, d) be a metric space.  Define a * b = min  {a, b} and tM(x, y, t)
t d(x, y)




  for all  

x, y  X  and all t > 0.  Then (X, M, *) is a Fuzzy metric space.  It is called  the Fuzzy metric space induced by 
d. 
  

2.3. Definition.  [9]  A sequence {xn}  in a Fuzzy metric space  (X, M, *) is said to be  a Cauchy 
sequence   if and only if for each  > 0,  t > 0, there exists n0  N such that   M(xn, xm, t) > 1 -    for 
all  n, m   n0.   
 
The sequence {xn} is  said to converge  to a point x in X  if and only if  for each   > 0,  t > 0 there 
exists  n0  N  such that M(xn, x, t) > 1 -   for all n  n0.  
A Fuzzy metric space (X, M, *) is said to be complete if every  Cauchy  sequence in it converges to a point in it. 
 

2.4. Definition. [11] Self mappings A and S of a Fuzzy metric space (X, M, *) are said to be weak compatible if they 
commute at their coincidence points. 
 
2.5. Definition. Suppose A and B be two self mappings on a Fuzzy metric space (X, M,*), then A is called  
B-absorbing if there exists a positive R > 0 such that  M(Bx, BAx, t)  M(Bx, Ax, t/R) for all x  X. Similarly, B is 
called A-absorbing if there exists a positive R > 0 such that M(Ax, ABx, t)  M(Ax, Bx, t/R) for all x  X.  
 
Now, we give an example which shows that absorbing map need not commute at their coincidence points. 
 
Example 2.2. Let X = [0, 2] be a metric space and d and M are same as in Example 2.1.  Define A, B : X  X by  

    
2 if x 2

Ax
0 if x 2


  

      and       Bx = 2    for x  X. 

Then the map A is B-absorbing for any R > 2 but the pair of maps (A, B) are not commute at their coincidence point             
x = 0. 
 
2.6. Definition. Self mappings A and S of a Fuzzy metric space  (X, M, *)  are said to be any kind of coincidentally 
commuting mappings if and only if there is a sequence {xn} in X satisfying 

n
lim


fxn =  
n
lim


gxn = u, for some  u X and 

fgu = gfu at this point. 
 

Example 2.3. Let (X, M, *) be a Fuzzy metric space, where X = [0, 2] with  a t - norm defined by a * b = 

min{a, b} for all a, b  X and  

t , if t 0
t | x y |M(x, y, t)

0 , if t 0

    
 

    for all x, y  X. 

 Define f, g : [0, 2]  [0, 2] by 

 
2, if x [0,1]

f (x) x , if x (1,2]
2


 



            and     
2, if x [0,1]

g(x) x 3 , if x (1, 2]
5


 



. 
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Consider the sequence {xn} = 12
2n

  
 

. Clearly f(1) = g(1) = 2 and f(2) = g(2) = 1. Also fg(1) = gf(1) = 1 and  

fg(2) = gf(2) = 2.  

Thus, f and g are weakly compatible mappings.   

Now  n
1fx 1

4n
   
 

   and   n
1gx 1

10n
   
 

. 

Therefore, fxn  1, gxn  1, fg(xn) = 2, gf(xn) =  4 1
5 20n

  
 

 and  n n 6n
5

tlim M fgx ,gfx , t 1,
t

 


   so f and g are not 

compatible maps on X but they are any kind of coincidentally commuting mappings. 

2.1. Remark. The above example shows that weakly compatible mappings are also any kind of coincidentally   
commuting mappings. 

2.1. Lemma. [5] Let (X, M, *) be a fuzzy metric space. Then for all x, y  X, M(x, y, .) is a non-decreasing function.  

2.2. Lemma.  [1] Let  (X, M, *) be a fuzzy metric space.  If there exists k  (0, 1) such that for all x, y  X      

   M(x, y, kt)     M(x, y, t)   t >    then  x = y. 

2.3. Lemma. [12] Let {xn} be a sequence in a fuzzy metric space   (X, M, *).  If there exists a number k  (0, 1) such 
that 

 M(xn+2, xn+1, kt)    M(xn+1, xn, t)    t > 0   and  n  N.  Then {xn} is  a Cauchy sequence in X. 

2.4. Lemma. [7] The only t-norm * satisfying r * r  r for all r  [0, 1] is the minimum t-norm, that is 

  a * b = min {a, b} for all a, b  [0, 1]. 

III. MAIN RESULT 

3.1. Theorem. Let (X, M, *) be a complete Fuzzy metric space with continuous t-norm defined by a * b = min{a, b} 
where a, b  [0, 1] and let A, B, S, T, P and Q be mappings from X into itself such that the following conditions are 
satisfied :  
 

1. P(X)   ST(X),    Q(X)     AB(X);   

2. there exists q  (0, 1) such that for every x, y  X and t > 0   

3. M(Px, Qy, qt)  min {M(ABx, STy, t), M(Px, ABx, t), M(Qy, STy, t), M(Px, STy, t)}; 

4. for all x, y  X, 
t
lim


M(x, y, t) = 1; 

5. AB = BA,  ST = TS,  PB = BP,  QT = TQ; 

6. Q is ST-absorbing. 
 

If the pair of maps (P, AB) is reciprocal continuous and semi-compatible, then P, Q, S, T, A and B have a unique  

common fixed point in X.  

Proof :   Let x0  X.  From (a),  there exist  x1, x2  X  such that   
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   Px0 = STx1     and     Qx1 = ABx2 .   

 Inductively, we can construct sequences {xn} and {yn} in X such that 

  Px2n-2 = STx2n-1 = y2n-1  and   

  Qx2n+1 = ABx2n = y2n   for  n = 1, 2, 3, ... . 

 By using contractive condition (b), we obtain 

M(Px2n, Qx2n+1, qt)   min{M(ABx2n, STx2n+1, t), M(Px2n, ABx2n, t), M(Qx2n+1, STx2n+1, t), M(Px2n, STx2n+1, t)} 

    =   min{M(y2n, y2n+1, t), M(y2n+1, y2n, t),  M(y2n+2, y2n+1, t), M(y2n+1, y2n+1, t)} 

       min{M(y2n, y2n+1, t), M(y2n+1, y2n+2, t)}. 

From Lemma 2.4, we have 

    M(y2n+1, y2n+2, qt)     M(y2n, y2n+1, t). 

Similarly,  we have 

    M(y2n+2, y2n+3, qt)     M(y2n+1, y2n+2, t). 

Thus, we have  

  M(yn+1, yn+2, qt)      M(yn, yn+1, t)  for n = 1, 2, ...  

      M(yn, yn+1, t)       M(yn, yn+1, t/q) 

      M(yn-2, yn-1, t/q2) 

  ... ... ... ... 

      M(y1, y2, t/qn)  1 as n ,   and hence  M(yn, yn+1, t)   1 as n  for any t > 0.  

For each  > 0 and t > 0,  we can choose n0  N such that  

 M(yn, yn+1, t) > 1 -    for all n > n0. 

For  m, n  N, we suppose m  n.  Then we have 

M(yn, ym, t)  M(yn, yn+1, t/m-n) * M(yn+1, yn+2, t/m-n) * ... * M(ym-1, ym, t/m-n) 

           (1 - ) * (1 - ) * ... * (1 - ) (m - n) times 

           (1 - )and hence {yn} is a Cauchy sequence in X. 

Since (X, M, *) is complete, {yn} converges to some point z  X. Also its subsequences converge to the same 

point i.e. z  X 

i.e., {Qx2n+1}   z       and  {STx2n+1}   z           (1) 

{Px2n}   z  and    {ABx2n}   z.                                   (2) 

Since the pair (P, AB) is reciprocally continuous mapping, then we have   

n
lim


PABx2n = Pz    and   
n
lim


ABPx2n = ABz.   

And semi-compatibility of  (P, AB) gives   

ABPx2n  ABz  therefore  Pz = ABz.        (3) 
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We claim  Pz = ABz = z. 

Step 1.    Put x = z  and y = x2n+1 in (b), we have 

 M(Pz, Qx2n+1, qt)    min{M(ABz, STx2n+1, t), M(Pz, ABz, t), M(Qx2n+1, STx2n+1, t), M(Pz, STx2n+1, t)}. 

Taking n   and using equation (1), we get 

 M(Pz, z, qt)       min{M(z, z, t), M(Pz, z, t), M(z, z, t), M(Pz, z, t)} 

i.e.           M(Pz, z, qt)  M(Pz, z, t). 

Therefore, by using Lemma 2.2, we get 

  Pz = z. 

Therefore, ABz = Pz = z.  

Step 2.   Putting   x = Bz and  y = x2n+1  in condition  (b), we get 

      M(PBz, Qx2n+1, qt)   min{M(ABBz, STx2n+1, t), M(PBz, ABBz, t), M(Qx2n+1, STx2n+1, t),  

M(PBz, STx2n+1, t)}. 

As BP = PB, AB = BA,  so we have 

 P(Bz) = B(Pz) = Bz   and  

 (AB)(Bz) = (BA)(Bz) = B(ABz) = Bz. 

Taking n  and using (1), we get 

 M(Bz, z, qt)     min{M(Bz, z, t), M(Bz, Bz, t), M(z, z, t), M(Bz, z, t)} 

i.e.      M(Bz, z, qt)    M(Bz, z, t). 

Therefore, by using Lemma 2.2, we get  

Bz = z 

and also we have 

 ABz = z 

 Az = z.  

Therefore,  Az = Bz = Pz = (4) 

Step 3.  As P(X)  ST(X),  there exists u  X such that   

  z = Pz = STu.             

 Putting   x = x2n and y = u  in (b),  we get 

 M(Px2n, Qu, qt)   min{M(ABx2n, STu, t), M(Px2n, ABx2n, t),  M(Qu, STu, t), M(Px2n, STu, t)}. 

Taking n  and using (1)  and (2), we get 

 M(z, Qu, qt)  min{M(z, z, t), M(z, z, t), M(Qu, z, t), M(z, z, t)} 

i.e.       M(z, Qu, qt)   M(z, Qu, t) 

Therefore, by using Lemma 2.2, we get 

 Qu = z. 

Hence   STu = z = Qu.   

Since Q is ST-absorbing then 

 M(STu, STQu, t)   M(STu, Qu, t/r) = 1 

i.e. STu = STQu    
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 z = STz. 

Step 4.  Putting   x = x2n and y = z in (b), we get 

 M(Px2n, Qz, qt)    min{M(ABx2n, STz, t), M(Px2n, ABx2n, t),  M(Qz, STz, t), M(Px2n, STz, t)}. 

Taking n  and using (2) and step 3, we get  

 M(z, Qz, qt)  min{M(z, Qz, t), M(z, z, t), M(Qz, Qz, t), M(z, Qz, t)} 

i.e.    M(z, Qz, qt)    M(z, Qz, t). 

Therefore, by using Lemma 2.2, we get 

 Qz = z. 

So, z = Qz = STz. 

Step 5. Putting   x = x2n and y = Tz in (b), we get 

 M(Px2n, QTz, qt)    min{M(ABx2n, STTz, t), M(Px2n, ABx2n, t), M(QTz, STTz, t), M(Px2n, STTz, t)}. 

As  QT = TQ   and  ST = TS,   we have  

 QTz = TQz = Tz   and  

 ST(Tz) = T(STz) = TQz = Tz. 

Taking n , we get  

 M(z, Tz, qt)     min {M(z, Tz, t), M(z, z, t), M(Tz, Tz, t), M(z, Tz, t)} 

           min {M(z, Tz, t), M(z, Tz, t)} 

i.e.           M(z, Tz, qt)     M(z, Tz, t). 

Therefore, by using Lemma 2.2, we get 

 Tz = z. 

Now  STz = Tz = z  implies  Sz = z.   

Hence, Sz = Tz = Qz =  (5) 

Combining (4) and (5), we get  

  Az = Bz = Pz = Qz = Tz = Sz  =  z. 

Hence, z is the common fixed point of A, B, S, T, P and Q. 

Uniqueness :  Let u be another common fixed point  of A, B, S, T, P and Q.  

 Then   Au =  Bu = Pu = Qu = Su = Tu = u. 

 Put  x = z and  y = u  in (b), we get 

 M(Pz, Qu, qt)   min {M(ABz, STu, t), M(Pz, ABz, t), M(Qu, STu, t), M(Pz, STu, t)}. 

Taking n ,   we get  

    M(z, u, qt)   min {M(z, u, t), M(z, z, t), M(u, u, t), M(z, u, t)} 

             min {M(z, u, t), M(z, u, t)} 

i.e.     M(z, u, qt)     M(z, u, t). 

Therefore by using Lemma 2.2, we get 

  z = u. 

Therefore  z is the unique common fixed point of self maps A, B, S, T, P and Q.  
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3.2. Theorem. Let (X, M, *) be a complete Fuzzy metric space with continuous t-norm defined by a * b =     

min {a, b} where a, b  [0, 1] and let A, B, S, T, P and Q be mappings from X into itself such that the following 

conditions are satisfied : 

1. P(X)   ST(X),    Q(X)    AB(X);   

2. there exists q  (0, 1) such that for every x, y  X and t > 0 

3. M(Px, Qy, qt)   min {M(ABx, STy, t), M(Px, ABx, t), M(Qy, STy, t), M(Px, STy, t)}; 

4. for all x, y  X, 
t
lim
  

M(x, y, t) = 1; 

5. AB = BA,  ST = TS,  PB = BP,  QT = TQ; 

6. Q is ST-absorbing; 

If the pair of maps (P, AB) is subsequential continuous and semi-compatible then P, Q, S, T, A and B have a 

unique common fixed point in X.  

Proof. Since reciprocal continuity implies subsequential continuity, so the proof follows from Theorem 3.1. 
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