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ABSTRACT

Rhoades discussed a number of fixed point theorems dealing with contractive conditions with rational
expressions. In an analogous manner we define mappings on product spaces which satisfy such contractive like
conditions in the first variable, and generalize the result of Nadler to such mappings. Here we discuss only
those conditions which involve a single mapping. In the Nadler’s result we enlarge the class of mappings by
Rhoades type contractive conditions in the first variable and the class of metric spaces Z by the class of uniform

spaces.
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I. INTRODUCTION

The fixed point property (f. p. p.) is not necessarily preserved under the Cartesian product of spaces [2,3]. It is
preserved when the maps f: XxZ —-XxZ have special contraction properties. Nadler’s results are in this
direction. Nadler’s main results are as follows:
1.1 Theorem
Let (X, d) be a metric space. Let A;; X—X be a function with at least one fixed point a; for each i=1, 2,
........... , and let Ag:X—X be a contraction mapping with fixed point a,. If the sequence {A;} converges
uniformly to Ao, then the sequence {a;} converges to a,.
1.2 Theorem
Let (X, d) be a locally compact metric space, let A;; X—X be a contraction mapping with fixed point a; for each
i=1,2,........ If the sequence {A} converges pointwise to Ay, then the sequence {a;} converges to a,.
1.3 Theorem
Let (X, d) be a complete metric space, Z a metric space which has the f.p.p. and f: XxZ—XXxZ be a contraction
in the first variable.

(@) If fis uniformly continuous, then f has a fixed point.

(b) If (X, d) is locally compact, f is continuous, then f has a fixed point.

In what follows, X will denote a complete metric space, Z a uniform space in which sequences are adequate

and f a mapping of XxZ into XxZ. For a fixed zeZ, f,; X—X be a mapping which is defined as f,(X)=mnf(x, z)
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for all xeX, where m, is the projection of XxZ on X along Z. (m), 1<m<10; will denote the condition (m) in

Rhoades [7] with the modification that constant or functions that appear in (m) depend on z.
I1. SOME DEFINITIONS FROM RHOADES [7]

Let (X, d) be a complete metric space and f:X — X be mapping. For x eX, let 0(x)={x, f(x), f*(X), ...... } be

the orbit of x under f. Consider the following conditions on f and (X, d):

(1)' (Dass and Gupta) — There exist numbers a, B>0, a+ B<1 and for each x, x« € X, x« €0 (X) such that

d(x., f(x))L+d(x, f(x))]
1+d(x, X.)

d(f(x), f(x.) <« + pd (X, X.)

(2)" (Jaggi and Dass) — There exist numbers o, >0, a+p<1 and for each x, X« € X, X #x«, X«€0(X) such that

d(x, f(x))d(x., f(x.))
d(x, f(x.))+d(x., f(x))+d(x,x.)

(3)" (Gupta and Saxena)— There exist numbers a, b, ¢=0, a+b+c<1 and for each x,x~eX,x«€0(x) such that

a[l+d(x, f(x))d(x., f(x.)) N bd(x, f(x))d(x., f(x.))
1+d(x,X.) d(x, x.)

(4)" (Jaggi) — There exist numbers o, >0, a+ B<1 and for each X, X« € X, X #X= X«€0 (X) such that

d(x, f(x))d(x., f(x.))
d(x, x.)

(5)" (Khan) — There exists a number k, 0 < k<1 and for each x, x» € X, X« €0 (X) such that

d(x, f(x))d(x, f(x.))+d(x., f(x.)).d(x., f(X))
d(x, f(x.))+d(x., f(x))

(6)" (Jain and Dixit) — There exist o; , Bi = 0,00+ 203+ 204+ By + Bo+ B3+ 2Bs< 1, 0+ Br+ By + Ps<1 and

d(f(x), f(x.)) <a

+ fd (X, X.)

d(f (), f(x)) <

+cd (X, X.)

d(f(x), f(x.)) <« + Ad (X, X.)

d(f(x), f(x.) <k

for each X, x=e X, X #x=, X«€0 (X) such that

d(x, fOO)d(x., f(x)) dx fx)Adx, F(x) dx, f(x)).d(x., f(x.)
d(x, x.) 2 d(x, x.) 3 d(x, x.)

A ”E)g'xd ix; 0D L Bd )+ Bd(x £ (0) + Bod (5, £ (x.)) + Bud (%, T (x.))

+ B5d (x., £(x))

d(f(x), f(x.) <,

(7)' (Sharma and Bajaj) — There exist a number B, 0 < B < %2 and for each X, x-e X, X~ €0 (x) such that

d(x, f(x)).d(x, f(x.))

d(f(x), f(x.))<p d(x, f(xX))+d(x, f(x.))
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5
(8)" (Dass) — There exist numbers a; , B;>0 with &, + &, + a5 + Z'BJ < 1 for each positive integer m, and
=1

for each X, X» € X, X #X«, X«€0 (X) such that
d(x, f™(x)).d(x., f"(x.)) Ly 0 ™(x)).d (X, f " (x))
d(x,x.) Td(F"(x), f"(x.)
" d(x, f"(x.)).d(x., f "(x.))
Pod(F"(x), f™(x.))
+ B (X, £ (X)) + B, d(x, (X)) + Bsd (X, 7 (X))

(9)" (Pachpatte Thm.1) — There exists a number g, (0,1), and for each X, X« € X, X #Xx, X+€0 (X) such that

), 306 T OO, F(x)) DO PNk, F) dOx f 0N, f(x*))}

d(f"(x), f"(x.)) <,

+ A (X %) + B, d (x, £7 (X))

d(f(x), f(x))<q max{ d(x,x.) ' d(x,x.) , 2d (X, X.)

(10)' ( Pachpatte Thm.2) — There exists a number g, € (0,1), and for each x, x«eX, X #x«,X~€0(X) such that

min{d(f (%), T (%)), d(x, f(x)),d(X., f(x.)), d(x, f(x)).d(x..f (x,,))} ~

d(x, X.)
min{d(x’ f(x.)).d(X., T (X)) | d(x, f(x)).d(x, f(x*))} <q,d(x %)
d(X, X*) d(X! X*)
Now we prove the following results:
2.1 Theorem

Let (X, d) be a complete metric space, Z a uniform space in which sequences are adequate which has the f. p. p.
and let f:XxZ—XxZ be a mapping.
(a) If fis uniformly continuous such that for each zeZ, f,e(3), then f has a fixed point.
(b) If X is locally compact, f is continuous such that for each zeZ, f,e(3), then f has a fixed point.
Proof: We prove (a) and (b) simultaneously:
Step I: We define a sequence {t,} in X as follows:

For a fixed xq in X,
fzo (Xo) =1, = X1, (Z) = fzn (Xo) =7 f (fznil(xo)’ Z); nx1
For f,e(3)’ we have for x, X« X, X=€0(X) there exist a, b, >0 with a+ b+ ¢<1 such that

al+d(x f,(x)]d(x., f,(x.)) N b.d(x, f,(x)).d(x., f,(x.))
1+d(x,X.) d(x, x.)

Set x»=f,(x) in the above inequality to obtain
d(f,(x), f2(x)) < @-+b)d(f,(x), f2(x) +cd(x, f,(x)

which implies that

d(F, (), 1200) s[

d(f,(x), f,(x.)) < +c.d(X, x.)

c
l-a-b

j.d(x. f,(0)
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Now, set Xx=x«, then we have

d(f,(x.), £, (x.)) S(

c
l1-a-b

Repeating above substitute we obtain

j-d(x*, f, (x.))

d(ff(x»ff(x»:z(l__:__bj.d(x,n<x»
Using induction, we get
d(ﬂ%@ﬂ?ﬂa»s[l_a_bylumfxw)

Finally set x=x,, we get

C
d(t,.t,,,)<h".d(,t), whereh= <1
(o) <"1t =

Using triangle inequality, we find, for m > n

d(t, t)<d( J)+o+d(t

n’tn+1)+d(tn +1’tn+ m—1’tm)

<(h"+h+ly  pm-ly4 (tyty)

_ hl@-hM=-M g (tO,tl) y hNd (tO,Ll)
1-h 1-h
Since h"—0 as n—oo, this inequality shows that {t,} is a Cauchy sequence. Since X is a complete metric space,
there exists a point p; in X such that t,—p;
Step 11: we show that p; is a unique fixed point of f,.

Since f,e(3). We have (taking X=t,, X-=p;)

a'[1+d(tn’ fz (tn))] bd (tn7 fz (tn))!d(pl’ fz(pl))
1edg,p) PP dtt,. p.)

d(fz (tn)! fz(pl)) < +C'd (tn7 pl)

Since f, is continuous, taking n—oo, we get
d(ps, f(p1))<a. d(py,f.(p1)
which is possible only when d(p, f,(p1))=0 or p=f,(p.), i.e., p; is a fixed point of f,.

Suppose p; is another fixed point of f, such that p;=p, then,

d(p P )=d(f (p )’f (p ))S a"[1+d(p1’ fz(pl))]d(p f (p ))+b'd(p1’ fz(pl))'d(pZ’ fz(pz))

1+d(p,, p,) d(p,, p,)

+cd(py, py)
=d(py, p,) <cd(p;, p,)

which is a contradiction. Hence p;=p, or p; is a unique fixed point of f,.
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Step 111 Let a mapping F:Z—X be such that F(z)=p; is the unique fixed point of f,. Now, let zoeZ and let

{Zi};ilbe a sequence in Z which converges to z,. Then by the hypothesis in (a), the sequence
{f, }iZi converges uniformly to f,, and hence by the Theorem 1.1, the sequence {F(z;)};; converges to

F(zo), under the assumptions of (b), we may apply Theorem 1.2, to conclude that the sequence {F (z;)};-;

converges to F(zp). Hence in either case this proves that F is continuous on Z. Also n;f(F(z), z)=f,(F(z))=F(z),
because F(z) is a fixed point of f,. Next, let G:Z—Z be defined by setting G(z)= n,f(F(z),z). Then G is a
continuous map of Z to itself. Since Z has the f.p.p., there exists a point peZ such that G(p)=p, then the point
(F(p), p) is such that w;f(F(p), p) =F(p) and w.f(F(p),p)= G(p) = p. Therefore (F(p), p) is a fixed point of f in
XXZ.
2.2 Theorem
Let (X, d) be a complete metric space, Z a uniform space in which sequences are adequate which has the f. p. p.
and let f:XXZ—XXxZ be a mapping.
(a) If fis uniformly continuous such that for each zeZ, f, satisfies any one of the conditions (2), (5), (6),
(7), (8), (9) and (10), then f has a fixed point.
(b) If (X, d) is locally compact, f is continuous such that for each zeZ, f, satisfies any one of the
conditions (2), (5), (6), (7), (8), (9) and (10), then f has a fixed point.
Proof: We prove (a) and (b) simultaneously:
We define a sequence t,(z)=t, in X as follows:

For a fixed Xg in X and any zeZ,
f2(%) =t,, t, = £ (%) =7, F (£ (X,),2);n>1
If  is such that f,(2) and apply x~=f,(x) then we have

d(fz (X)’ f22 (X)) <a. > d(X, fZ (X))d(fz (ZX)’ f22 (X))
d(x, f.2(x))+d(f,(x), f.2(x)+d(x f,(x)

< ad(f, (), 12(0) + Bd(x, f,(x)

+B.d(x, f,(x)

or d(f,(x), f, (x))<[ jd(x f,(x))

Let x=x« in above inequality we have

d(f, (x), £2(x. »<[ f jd(x*,f (x))

Again set x«=f,(x), then we can obtain

4(f2(0), 1, (x»<( f jd(x f.00)

By the induction we can write above relation as

166 |Page




International Journal of Advanced Technology in Engineering and Science g
Vol. No.5, Issue No. 01, January 2017 ijates

www.ijates.com ISSN 2348 - 7550

B
l-«o

Finally set x=x,, then we obtain

d(f," (x), £, (X)) S( jnd(x, f,(x))

dawnﬂ)s(Iéijndamn)

(24

Here we note that if the function f: XxZ—>XxZ is such that f,e(5) then by using similar arguments, we can show
that

d(t,.t,.,) <k"d(t,.t,)

Similarly, if f is such that f,<(6), then we can obtain, the condition

BB +B, )
anash_%_&_dema)

Likewise, if f is such that f,e(7), then we obtain

d(t,.t,.,) < B"d(t,.t,)

Now, if f is such that f,e(9), then we can obtain

d (tn 'tn+l) < qfd (tO ’tl)

If f is such that f,e(10), then we can obtain

d(t, t,,) <gyd(ty.t,)

Finally, if the function f is such that f,<(8), then to obtain a condition of the type above, we proceed as follows:
Define g, = f,", then we have

d(x,9,(x)-d(x.,9,(x)) _ d(xg,(x).d(x.,9,(x))
d(x,x.) © o d(9,(0,95(x)

06,9, (x.)) 0 (%, ,(x.)
T g o0a ey A+ A(x.8,(0)

+ fyd (X, 9, (X)) + B,d (X, 9, (X)) + B5d (X, (X))

d(g,(x),9,(x.)) <%,

Using symmetry in (7), we have
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d(x., 9,(x))d(x, 9:(x) , , d(x.,9,(x)).d (X, g (x.)
d (., x) T d(g:(x), 8,()
d(x., 9,(x)).d(x, 9,(x))
4(9.(%). 9. (X)) +4,d (%, X) + Bd (X, 9,(X.))
+4,d (X, 9, (X)) + £,d (X., 9, (X)) + B;d (%, 9, (X.))

d(g:(x), & (X)) <

+ 05

Adding (7) and (8) above, we get

d(x,9, () (x., ,(x.)

d(X., X)
+, [0000,00)006,0,00) 06 8, (DI GO |y
& (9,9, 9 (x.) A
#7204 (% ,00) + (%, Gy (x D+ 7514 (83 (x.) + A (<., 8, ()]

d(9,(x),9,(x.)) <7

.9
0{2 +(l3
2 )

Bty

where, ¥, =, ¥, = >

and ¥,

+
Ys=B V. :%’

5
with y, + 2y, + 73 + 2y, + 2y =al+a2+a3+z,6i <1

i=1
In the equation (9), we apply similar procedure described above for the equation (1) and if mapping g, referred

as f, then we can obtain

d(tn'tn+l)s( 7/2+73+7/4+}/5 Jd(tO’tl)
1-1=v2=74-7s

Clearly according to conditions (2) , (5) , (6) , (7), (9) , (10) and (8) we obtain equations (1), (2), (3), (4), (5),
(6) and (10) respectively. However, in each of these cases we see that {t,} is a Cauchy sequence in X. However,
by the completeness of X, there is a point p; in X such that t, converges to p;. We can easily see that p; is a

unique fixed point of f,. By the help of step-I1I of the above theorem 2.1, we can conclude the theorem 2.2.

111. CONCLUSION

We observe that condition (1), (4) are stronger than (3), therefore the above Theorem 2.1 has two corollaries
corresponding to each of these two conditions. We also observe that condition (4) is stronger than conditions
(6) and (8) therefore the Theorem 2.2 has one corollary corresponding to (4). This paper is extension of
Nadler’s result according to contractive conditions of Rhoades [7].
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