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ABSTRACT 

Rhoades discussed a number of fixed point theorems dealing with contractive conditions with rational 

expressions. In an analogous manner we define mappings on product spaces which satisfy such contractive like 

conditions in the first variable, and generalize the result of Nadler to such mappings. Here we discuss only 

those conditions which involve a single mapping. In the Nadler’s result we enlarge the class of mappings by 

Rhoades type contractive conditions in the first variable and the class of metric spaces Z by the class of uniform 

spaces. 
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Uniformly Continuous Mapping. 

 

I. INTRODUCTION 

 

The fixed point property (f. p. p.) is not necessarily preserved under the Cartesian product of spaces [2,3]. It is 

preserved when the maps f: XxZXxZ have special contraction properties. Nadler’s results are in this 

direction. Nadler’s main results are as follows: 

1.1 Theorem 

Let (X, d) be a metric space. Let Ai: XX be a function with at least one fixed point ai for each i=1, 2, 

……….., and let A0:XX be a contraction mapping with fixed point a0. If the sequence {Ai} converges 

uniformly to A0, then the sequence {ai} converges to a0. 

1.2 Theorem 

Let (X, d) be a locally compact metric space, let Ai: XX be a contraction mapping with fixed point ai for each 

i=1,2,…….. If the sequence {Ai} converges pointwise to A0, then the sequence {ai} converges to a0. 

1.3 Theorem 

Let (X, d) be a complete metric space, Z a metric space which has the f.p.p. and f: XxZXxZ be a contraction 

in the first variable. 

(a) If f is uniformly continuous, then f has a fixed point. 

(b) If (X, d) is locally compact, f is continuous, then f has a fixed point. 

In what follows, X will denote a complete metric space, Z a uniform space in which sequences are adequate 

and f a mapping of XxZ into XxZ. For a fixed zZ, fz: XX be a mapping which is defined as fz(x)=1f(x, z) 
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for all xX, where 1 is the projection of XxZ on X along Z. (m)
'
, 1m10; will denote the condition (m)

'
 in 

Rhoades [7] with the modification that constant or functions that appear in (m)
'
 depend on z. 

 

II. SOME DEFINITIONS FROM RHOADES [7] 

 

Let (X, d) be a complete metric space and f:X  X be mapping. For x X, let 0(x)={x, f(x), f 
2 

(x), ……}    be 

the orbit of x under f. Consider the following conditions on f and (X, d): 

(1)' (Dass and Gupta) – There exist numbers , 0, + 1 and for each x, x*   X, x* 0 (x) such that  
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(2)' (Jaggi and Dass) – There exist numbers , 0, +1 and for each x, x*   X, x x*, x*0(x) such that 
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(3)' (Gupta and Saxena)– There exist numbers a, b, c0, a+b+c<1 and for each x,x*X,x*0(x) such that 
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(4)' (Jaggi) – There exist numbers , 0, + 1 and for each x, x*   X, x x*, x*0 (x) such that 
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(5)' (Khan) – There exists a number k, 0 ≤ k<1 and for each x, x*   X, x* 0 (x) such that 
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(6)' (Jain and Dixit) – There exist αi , βi   0,α1 + 2α3 + 2α4 + β1 + β2 + β3 + 2β5 < 1, α2 + β1 +  β4 +  β5 <1 and 
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(7)' (Sharma and Bajaj) – There exist a number β, 0 < β < ½ and for each x, x* X, x* 0 (x) such that 
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(8)' (Dass) – There exist numbers αi , βj >0 with 1
5
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(9)' (Pachpatte Thm.1) – There exists a number q1 (0,1), and for each x, x* X, x x*, x*0 (x) such that 
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(10)' ( Pachpatte Thm.2) – There exists a number q2  (0,1), and for each x, x*X, x x*,x*0(x) such that 
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Now we prove the following results: 

2.1 Theorem 

 Let (X, d) be a complete metric space, Z a uniform space in which sequences are adequate which has the f. p. p. 

and let f:XxZXxZ be a mapping. 

(a) If f is uniformly continuous such that for each zZ, fz(3)
'
, then f has a fixed point. 

(b) If X is locally compact, f is continuous such that for each zZ, fz(3)
'
, then f has a fixed point. 

Proof: We prove (a) and (b) simultaneously: 

Step I: We define a sequence {tn} in X as follows: 

For a fixed x0 in X, 
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For fz(3)’ we have for x, x*X, x*0(x) there exist a, b, c0 with a+ b+ c<1 such that 

),(.
),(

))(,()).(,(.

),(1

))(,())].(,(1.[
))(),(( *

*

**

*

**
* xxdc

xxd

xfxdxfxdb

xxd

xfxdxfxda
xfxfd zzzz

zz 



  

Set x*=fz(x) in the above inequality to obtain 
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Now, set x=x*, then we have 
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Repeating above substitute we obtain 
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Using induction, we get 
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Finally set x=x0, we get 
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Since h
n
0 as n, this inequality shows that {tn} is a Cauchy sequence. Since X is a complete metric space, 

there exists a point p1 in X such that tnp1 

Step II: we show that p1 is a unique fixed point of fz. 

Since fz(3)
'
. We have (taking x=tn, x*=p1) 
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Since fz is continuous, taking n, we get 

d(p1, fz(p1))a. d(p1,fz(p1) 

which is possible only when d(p1, fz(p1))=0 or p1=fz(p1), i.e., p1 is a fixed point of fz. 

Suppose p2 is another fixed point of fz such that p1p2 then, 
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 ),(. 21 ppdc  

),(.),( 2121 ppdcppd   

which is a contradiction. Hence p1=p2 or p1 is a unique fixed point of fz. 
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Step III: Let a mapping F:ZX be such that F(z)=p1 is the unique fixed point of fz. Now, let z0Z and let 



1}{ iiz be a sequence in Z which converges to z0. Then by the hypothesis in (a), the sequence 



1}{ izi
f converges uniformly to fz0 and hence by the Theorem 1.1, the sequence 



1)}({ iizF  converges to 

F(z0), under the assumptions of (b), we may apply Theorem 1.2, to conclude that the sequence


1)}({ iizF  

converges to F(z0). Hence in either case this proves that F is continuous on Z. Also 1f(F(z), z)=fz(F(z))=F(z), 

because F(z) is a fixed point of fz. Next, let G:ZZ be defined by setting G(z)= 2f(F(z),z). Then G is a 

continuous map of Z to itself. Since Z has the f.p.p., there exists a point pZ such that G(p)=p, then the point 

(F(p), p) is such that 1f(F(p), p) =F(p) and 2f(F(p),p)= G(p) = p. Therefore (F(p), p) is a fixed point of f in 

XxZ. 

2.2 Theorem 

Let (X, d) be a complete metric space, Z a uniform space in which sequences are adequate which has the f. p. p. 

and let f:XxZXxZ be a mapping. 

(a) If f is uniformly continuous such that for each zZ, fz satisfies any one of the conditions (2)
'
, (5)

'
, (6)

'
, 

(7)
'
, (8)

'
, (9)

'
 and (10)

'
, then f has a fixed point. 

(b) If (X, d) is locally compact, f is continuous such that for each zZ, fz satisfies any one of the 

conditions (2)
'
, (5)

'
, (6)

'
, (7)

'
, (8)

'
, (9)

'
 and (10)

'
, then f has a fixed point. 

Proof: We prove (a) and (b) simultaneously: 

We define a sequence tn(z)= tn in X as follows: 

 For a fixed x0 in X and any zZ, 
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If f is such that fz(2)
'
 and apply x*=fz(x) then we have 
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Let x=x* in above inequality we have 
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Again set x*=fz(x), then we can obtain 
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By the induction we can write above relation as 
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Finally set x=x0, then we obtain 
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Here we note that if the function f: XxZXxZ is such that fz(5)
'
 then by using similar arguments, we can show 

that 
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Similarly, if f is such that fz(6)
'
, then we can obtain, the condition 
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Likewise, if f is such that fz(7)
'
, then we obtain 
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Now, if f is such that fz(9)
'
, then we can obtain 
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If f is such that fz(10)
'
, then we can obtain 
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Finally, if the function f is such that fz(8)
'
, then to obtain a condition of the type above, we proceed as follows: 

Define
m

zfg 1 , then we have 

 

 

 

 

           

 …….(7) 

Using symmetry in (7), we have 
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Adding (7) and (8) above, we get 
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In the equation (9), we apply similar procedure described above for the equation (1) and if mapping g1 referred 

as fz then we can obtain 
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Clearly according to conditions (2)
'
 , (5)

'
 , (6)

'
 , (7)

'
 , (9)

'
 , (10)

'
 and (8)

'
 we obtain equations (1), (2), (3), (4), (5), 

(6) and (10) respectively. However, in each of these cases we see that {tn} is a Cauchy sequence in X. However, 

by the completeness of X, there is a point p1 in X such that tn converges to p1. We can easily see that p1 is a 

unique fixed point of fz. By the help of step-III of the above theorem 2.1, we can conclude the theorem 2.2. 

 

III. CONCLUSION 

 

We observe that condition (1)
'
, (4)

'
 are stronger than (3)

'
, therefore the above Theorem 2.1 has two corollaries 

corresponding to each of these two conditions. We also observe that condition (4)
'
 is stronger than conditions 

(6)
'
 and (8)

'
 therefore the Theorem 2.2 has one corollary corresponding to (4)

'
. This paper is extension of 

Nadler’s result according to contractive conditions of Rhoades [7]. 
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