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ABSTRACT

The governing equations of an initially stressed, rotating and transversely isotropic thermoelastic solid
permeated with magnetic field are solved for surface wave solutions. The appropriate particular solutions in the
half-space satisfy the required boundary conditions at a thermally insulated stress free surface. A velocity
equation is obtained for wave speed of thermo-elastic Rayleigh wave. A special case is derived for small values
of reduced frequency. Some particular cases are also derived in absence of rotation, thermal, initial stress and
magnetic parameters.
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I. INTRODUCTION

Biot [1] proposed a coupled theory of thermoelasticity, where the heat equation is of diffusion type. In this
theory, the speeds of propagation for thermal signals are observed infinite. Lord and Shulman [2] extended the
Biot’s coupled theory to a generalized theory, where the heat equation is of hyperbolic type with a relaxation
time. A generalized theory of thermoelasticity with two relaxation times was developed by Green and Lindsay
[3]. Ignaczak and Ostoja-Starzewski [4] reviewed these generalized thermoelasticity in their book. Dhaliwal
and Sherief [5] developed generalized theory of anisotropic thermoelasticity. Chandrasekhariah [6] formulated
the governing equations for heat-flux generalized thermoelasticity. Thermoelasticity has numerous applications
in various engineering fields. For example, thermoelasticity has applications in polymer coating and evaluating
the stress redistribution in ceramic matrix composites as shown by Mackin and Purcell [7] and Barone and
Patterson [8].

Wave propagation phenomenon in solids is important due to its relevance in composite engineering, geology,
seismology, seismic exploration, control system and acoustics. The amplitudes of seismic signals are applicable

not only in investigating the internal structure of the earth, but also in exploration of valuable materials, oils,
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water, chemicals etc. In view of the fact that most large bodies, like the earth, the moon, and other planets, have
angular velocity and their own magnetic field. Surface waves in elastic solids were first studied by Lord
Rayleigh [9] for an isotropic elastic solid. The extension of surface wave analysis and other wave propagation
problems to thermoelastic solids with various parameters has been the subject of many studies; see, for example,
[10-32].

The study on wave propagation in a generalized thermoelastic media becomes more relevant when we include
additional parameters (e.g. rotation, initial stresses, electric field, magnetic field, anisotropy, porosity, viscosity,
microstructure and micro-temperature). In the present paper, the governing equations are formulated for an
initially stressed, rotating and transversely isotropic thermoelastic solid permeated with magnetic field. These
equations are solved for surface wave solutions and a velocity equation of thermoelastic Rayleigh wave is

obtained. Some special and particular cases are also discussed.
Il. FORMULATION OF THE PROBLEM AND SOLUTION

We consider an infinite homogeneous thermoelastic medium with reference temperature To. We restrict our

_ 0
analysis to plane strain parallel to x-z plane where displacement vector U = (u, 0, W) and — = 0. The origin

is taken on the plane surface and the positive z-axis pointing into the medium (z > 0). The medium is assumed

transversely isotropic, where the planes of isotropy are taken perpendicular to z-axis. Further, the medium is

assumed rotating with angular veIocityQ:(O, Q, O), subjected to hydrostatic state of initial stress and

permeated by a constant magnetic field H= (O, H,, O) . Following Agarwal [33], Yu and Tang [34], De and

Sengupta [35] and Schoenberg and Censor [36], the governing equations in x-z plane are written as
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and u, w are components of displacement vector, p is density of the medium L, is magnetic permeability of
the medium, P, is hydrostatic state of stress, C; are material constants, C¢ is the specific heat at constant
strain, K, , K, are the components of thermal conductivity tensor, ﬂij are the thermal coefficients, A, is the

coefficient of linear expansion in direction perpendicular to z-axis and 7‘2 is the coefficient of linear expansion

in the z-direction

Equations (1) and (2) are written as
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where,

a:Cl1+ﬂeH()2 — Po> b=C13+C44+,ueH02’ d =C33+,ueH02 — Po» ©€=Cyy — Py-

We consider the following surface wave solutions of equations (3) to (5)

{u,w, T}={A, B, C}exp{—nz+i(sx—pt)},, (6)
where s is wave number, p is angular velocity and 1) is constant to be determined.
Using (6) in equations (3) to (5), we obtain

(en’ +pp* —as® + pQ*)A+ (2ippQ —isnb)B—isp,C =0,

(7)
(—2ippQ—isnb)A + (dn® + pp* —es® + pQ?)B+np,,C =0, @
SpToBL A+ ipnToB§3 B - (K33n2 + ippC:: - K1132) C =0, )

where

B =Bu@—iteP), Bg =Bg(—itep), Cg=Ce(A—itp).
Equations (7) to (9) are homogenous equations in A, B, C . For existence of non-trivial solution of these

equations, the determinant of coefficients of A, B, C must vanish i.e.,
n°+ XN +X,n* + X, =0, (10)
where Xy,X; and Xzare given in Appendix .
Equation (10) is cubic in nz. Let nf , ng ,and 1’15 be three roots of equation (10). The appropriate particular
solutions in the half-space z > 0 are
u=A, exp{—n,z+i(sx—pt)}+A, exp{—n,z+i(sx —pt)}

. (11)
+ A, exp{—m,z+i(sx—pt)}
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w =B, exp{-n,z+i(sx —pt)}+ B, exp{-—n,z+i(sx —pt)}
. (12)
+ B, exp{—m,z+i(sx—pt)}
T =C, exp{—n,z+i(sx—pt)}+C, exp{—n,z +i(sx —pt)} 13
+C, exp{—n,z+i(sx—pt)}
where Bjand C; are written in terms of A; as
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The boundary conditions at thermally insulated stress-free surface z = 0 are vanishing of

7, =0, 7, =0, a—T=O, (18)
0z
where
ou ow
—(b—e —+d —e(=+2).
T ( ) ﬂ33 sz (62 8X)

Stresses and displacement tends to zero as z—o i.e. Re(1)>0, the temperature fluctuation T satisfy the radiation

condition. Putting the value of u, w,and T from equations (11) to (13) in boundary conditions (18), we get

is(;o—e)A +is(b—e)A, +is(b—e)A,—dn,B, —dn,B, —dn,B,

(19)
—PssCy = PiCo = PCs =0,
mA +m,A +n,A, —isB, —isB, —isB, =0, (20)
(=m)C, +(=12,)C, + (=12,)C; =0, (21)
Using relations (14) to (17) and eliminating A, A, , A;, we obtain
X152Ys = 0552 ~ XoeVa + XaSalr + XaiV o — Xa5211 =0, (35)

where ¥, Y0 Xav & &0 &5y 740 ¥, @Ay, are given in Appendix I1.
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The equation (25) is the required velocity equation of Rayleigh wave in a rotating and initially stressed
transversely isotropic medium. This equation involves the frequency and hence the wave is dispersive. The
imaginary part of speed (being non-zero) is called attenuation.

I1l. SPECIAL CASE (SMALL VALUES OF THE REDUCED FREQUENCY)

D' T H H 6 : T] — p2 — 2 aC; — * H H H H H
ividing equation (10) by s°, setting — =a., —=V", =P and introducing dimensionless quantities
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we obtain
a’ +Yot + Y, +Y,=0, (26)

where Yy, Y, and Y3 are given in Appendix I.

Since ﬂ* =1 isvery small, we neglect the higher power of 7y in comparison with unity and then one root of

equation (26) say (112 tends to infinity, while the other two roots OL§ and ag are given by

b?—e?—ad a 2b d e
T_Sss(g_?l\l"'g N2)+Qo ((l+a+833)}a2
e

D¢ -2 —a, 3 (R -2x -2 1) = -8,}=0

L+eg)a* +{(@+ % +E,,)X +

(27) Putting the values of

2,42

e%s’

i
) (c?) and taking the

XX Xar S 60085, 7107, and ¥, inequation (25), and dividing (—
33

limit oL, —oo, we obtain

Pasa? + Ko + Lo +Qaz +Ra + Do, + Mo, +S+ 8)
a,0,[ Uasal + Ea,al + Vo, + Wal +Fa, +Ga, + 2] =0,

where
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Equation (28) does not involve the frequency and so the wave is not dispersive. The velocity equation (28)

shows the dependence on elastic, rotational, magnetic, initial stress and thermal parameters.
IV. PARTICULAR CASES

(a) In absence of rotational, magnetic, transverse isotropy and initial stress parameter (isotropic
thermoelastic case)
If we neglect rotation, magnetic field, anisotropy and initial stress parameters, i.e.

Q*ZO’ QOZO’HZO’ p0=0, :Bllzﬂsa:ﬂa ,ﬂ1*1=ﬂ;3=ﬂ(1—i70p)=,3*,
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which agrees with those obtained by Lockett [17].
(b) In absence of rotational, magnetic and initial stress parameter (Transversely isotropic thermoelastic
case)

If we neglect rotation, magnetic field and initial stress parameters, i.e.

0 =0,Q,=0,H=0, p,=0,

then the equation (27) reduces to

2 2
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where
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The reduced equations (32) and (33) agree with those obtained by Chakraborty and Pal [37]

V. CONCLUSION

Theoretical analysis of the Rayleigh wave in a rotating and initially stressed transversely isotropic magneto-

thermoelastic solid half-space is presented. The velocity equation for Rayleigh wave is obtained and found

frequency-dependent. A special case of small reduced frequency is also considered, where the velocity

equation is found to be independent of frequency. In absence of rotation, magnetic and initial stress

parameters, the velocity equation (25) is reduced for isotropic thermoelastic case and transversely isotropic

thermoelastic case as particular cases. These theotetical results can be verified numerically for a realistic

model with relevant data. The present theoretical approach can be applied in the case of

piezothermoelastic composite materials or magneto-electro-elastic composites.
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