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ABSTRACT 

Scalable Elliptic Curve Cryptography (ECC) inverse block for pseudo random curves is presented. Inverse 

block is implemented with all 5 pseudo random curves recommended by National Institute of Standards and 

Technology (NIST) without re-configuring the hardware.  The divide and conquer method of Karatsuba Ofman 

algorithm is used to implement the modified multiplier for obtaining multiplication in finite field. Itoh Tsuji 

algorithm is implemented by using Brauer addition chain to obtain inversion in finite field. The proposed 

multiplier reduces the latency of inverse with negligible impact on area and power. The simulation results are 

analyzed using QuestaSim and synthesis is done using Cadence EDA tools. A comparison with previous 

techniques is also discussed in this paper.  

 

Keywords: Bruaer addition chain, Elliptic Curve Cryptography (ECC),   Itoh Tsuji algorithm, 
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I. INTRODUCTION 

 

Techniques involving cryptography are widely being implemented using finite fields. Elliptic Curves were 

developed by Koblitz and Miller independently [1],[2]. Elliptic Curve Cryptography (ECC) gained importance 

in 2004 after usage of finite fields in Advanced Encryption Standard (AES) private key Cryptography. ECC 

makes use of finite field operations. It is more efficient because of shorter key sizes. Inverse is one of the most 

trivial operations performed in finite field. The inverse is obtained for all 5 National Institute of Standards and 

Technology (NIST) recommended key sizes by repeated multiplication and squaring. 

Extended Euclidean algorithm was initially used to obtain inverse of an element. Fermat‟s Little theorem and 

Euler‟s theorem were practiced later to reduce complexity and increase speed. In this paper Itoh Tsuji 

algorithm[3] is used which is the fastest algorithm for the calculation of inverse in finite field. Fermat‟s Little 

theorem is the basis of Itoh Tsuji algorithm. It states that if „a‟ is a non zero element of GF(2
m
)  then a

-1
 = a

2^m-2
.   

Multiplication in finite field is implemented by using Karatsuba Ofman algorithm [4]. It uses divide and conquer 

technique thus latency and complexity is largely  reduced by this algorithm [5]. Modified multiplier is used 

which performs finite field multiplication in 7 clock cycles irrespective of the size of the curve. Squaring in 

finite field is obtained by interleaving zeroes. The inverses of all 5 NIST recommended curves with key lengths 

of 571-bits, 409-bits, 283-bits, 233-bits and 163-bits [6] are obtained using Bruaer addition chain.  ECC is 

widely being used in many security standards and server side applications because of its complex engineering 
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and shorter key requirements [7]. The proposed architecture reduces latency providing high speed with utmost 

security. 

The rest paper is organized as follows: Section II provides literature review about finite fields and ECC; Section 

III provides the implementation of modified multiplier, square and reduction (SR) block, inverse block and its 

architecture; Section IV provides the results and comparison; and Section V concludes the paper. 

 

II. ELLIPTIC CURVE CRYPTOGRAPHY 

 

2.1 Finite Field Operations  

ECC is based on one of the hardest arithmetic problems, the elliptic curve discrete logarithm problem, therefore 

making ECC a reliable cryptographic technique. The basis of ECC operations are finite field operations. The 

operations are finite field addition, multiplication, squaring and inversion. The finite field addition can be 

implemented by using bit wise X-OR operation. Multiplication operation is done by Karatsuba Ofman 

algorithm. Divide and conquer approach is used here to reduce the complexity of multiplication of large 

numbers from O(n
2
) to O(n

log
2

3
) [8]. The algorithm has two configurations; both the configurations are used in 

this paper: First configuration can be presented as: 

X.Y = (x12
l 
+ x0). (y12

l 
+ y0)                                      -(1) 

        = x1.y12
2^1

 + [(x0+x1). (y0+y1)+x1y1+x0y0]2
l 
+ x0y0 

In equation 1 X.Y can be obtained in three multiplications of „l‟ bit integers along with 4 additions, when 

compared to one multiplication  of „2‟ bit integers. Second configuration can be presented as: 

X.Y = (x22
2^ l 

+x12
l
 +x0) · (y22

2^ l
 + y12

l
 + y0)                  -(2) 

          = x2 y22
4^ l

+(x2 y1 +x1 y2)2
3^ l

 +(x2 y0 +x0 y2 +x1 y1)2
2^ l 

+(x1 y0 +x0 y1)2
l  

+x0 y0 

X.Y = x2 · y22
4 ^ l

 + [(x2 +x1) · (y2 + y1) + x2 y2 + x1 y1]2
3^ l 

+    [(x2 +x0) · (y2 + y0) + x2 y2 +x0 y0 +x1 y1]2
2 ^ l 

+ 

[(x1 +x0) · (y1 + y0) + x1 y1 +x0 y0]2
l
 + x0 y0 

       =u22
4 ^ l

 + [v2+ u2+u1]2
3 ^ l 

+ [v1+ u2 + u0 + u1]2
2 ^ l 

+ [v0+ u1 + u0]2
l
 + u0 

In equation 2 X.Y can be obtained in six multiplications of „l‟ bit integers along with 11 additions, when 

compared to one multiplication of „3‟ bit integers. 571 is the largest bit size that is to be implemented by the 

multiplier. The first and second configurations are used two times to implement multiplication of 571 bit. The 

16 bit multiplication is done using finite field multiplier. Implementation of modified multiplier is shown in 

Section III. 

Squaring operation is done by interleaving zeroes. Repeated squaring is done to reduce latency; addition is also 

implemented in the SR block. The reduction is done in the same block as shown in Section III, which reduces 

complexity to a very large extend. The reduction operation used in the proposed design is based on the reduction 

algorithms presented in  [9].  Finite field inverse is obtained by repeated squaring and multiplication. 

2.2 Itoh Tsuji Algorithm 

Inversion is the most time consuming operation in finite field operations [10]. Itoh Tsuji algorithm is used to 

find inversion as it is the fastest algorithm[11]. It is implemented by using Bruaer addition chains, which 

reduces the number of multiplications and thus latency. Let us consider an element „a‟Є GF (2
m
). The inverse of 

an element can be obtained using Itoh Tsuji algorithm as: 
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            a
-1

= a
2^m-2

                 -(3) 

a
2^m-2

  = a
2(2^m-1)

 

 where (m-1) is even,  2
m-1 

-1 = (2
m-1/2 

-1) (2
m-1/2 

+1) 

where (m-1) is odd,    2
m-1 

-1 = 2(2
m-2/2 

-1) (2
m-2/2 

+1)+1 

Table 1 BRUAER ADDITION CHAIN FOR GF (2
283

) 

 βui(a) βuj+uk(a) Exponentiation 

1 β1(a)  a 

2 β2(a) β1+1(a) β1
2
 x β1 

3 β4(a) β2+2(a) β2
2^2

 x β2 

4 β 8(a) β4+4(a) β4
2^4

 x β4 

5 β16(a) β 8+8(a) β8
2^8

 x β8 

6 β 17(a) β16+1(a) β16
2^1

 x β1 

7 β34(a) β17+17(a) β17
2^17

 x β17 

8 β35(a) β34+1(a) β34
2^1

 x β1 

9 β70(a) β35+35(a) β35
2^35

 x β35 

10 β140(a) β70+70(a) β70
2^70

 x β70 

11 β141(a) β140+1(a) β140
2^1

 x β1 

12 β282(a) β141+141(a) β141
2^141

 x β141 

The exponents are further simplified in a similar manner. The Bruaer addition chain for 283 bits is shown in 

Table 1. From equation 3:  a
-1

= a
2^283-2 

= a
2(2^283-1). 

This requires calculation of β282(a) where βj= a^(2^(j)-1). 

Squaring of β282(a) is done to obtain inverse of the element „a‟ in GF(2
283

). The addition chain required for the 

inversion of element in GF(2
283

) is (1, 2, 3, 4, 8, 16, 17, 34, 35, 70, 140, 141, 282). In addition chain, βk+j is 

defined as βk+j= ((βk)^(2*j))*βj . 

Thus inverse can be obtained with a maximum of 2[log2(m-1)]  number of multiplication operations and the 

number of squaring operations required are (m-1). 

 

III. DESIGN AND ARCHITECTURE 

3.1 Finite Field Arithmetic Blocks 

To obtain inverse, recursive multiplication and squaring is done. Scalability is to implement all 5 NIST 

recommended curves without any change in hardware. Modified multiplier is implemented with the help of 

Karatsuba Ofman algorithm‟s two configurations. For the largest curve of 571bits, second configuration is 

implemented two times and first configuration is also implemented two times. This reduces the critical path 

when compared to the critical path obtained if two 571 bits were multiplied. The input X of 571 bits is split into 

3 parts each of 191 bits. 

Each 191 bit is again split into 3 parts each of 64 bits i.e., second configuration is implemented two times. Each 

64 bit is again split into 2 parts each of 32 bits. Each 32 bit is again split into 2 parts each of 16 bits i.e., first 

configuration is also implemented two times. The 16 bit multiplier is implemented by using bit wise AND and 

XOR operations.  Different inputs are selected by the multiplexer at each clock cycle to be the operands of the 

191 bit multiplier. The output of 191 bit multipliers is registered and added. The multiplication block needs „6‟ 
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multiplication operations according to the second configuration and „1‟ clock cycle for addition in the ADD 

block, which is nothing but an XOR gate as shown in Fig. 1. Thus total 7 clock cycles are required for 

multiplication when compared to the previous work which required 9 clock cycles as shown in Fig 4(b) and 4 

(a). Multiplication in all the curves is thus implemented in same number of clock cycles. The squaring finite 

field operation can be achieved by interleaving zeroes in between the bits of the operand. Two operations i.e., 

repeated squaring and addition operation are implemented using SR block. 

Reduction is done only in the SR block to reduce complexity[12],[13]. The output of the multiplier block is 

given as an input to the SR block through „X‟, for reduction after multiplication. A multiplexer is used to select 

the input to the reduction module as shown in Fig 2. 

 

Fig. 1. Block diagram of modified multiplier 

The least significant 571 bits of „X‟ are given as an input to the SQ block. For repeated squaring the reduced and 

stored output of „SQ‟ block present in „OUT‟ is again fed back into the „SQ‟ block. „2‟ clock cycles are required 

for performing addition and reduction operation. The repeated squaring operation requires „(t+1)‟ clock cycles to 

execute A
2^t

 mod P. 

 

Fig. 2. Block diagram of SR block 

3.2 Scalable Inversion 

The block diagram of scalable inverse block is shown in Fig. 3. The inverse for all 5 NIST recommended Pseudo 

random curves is obtained without re-configuring the hardware by using the Bruaer addition chain. The Modified 

Multiplier and SR block inputs are selected with the help of multiplexers. The intermediate results are stored in a 
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set of 571 bit registers, β1, β2, β4, β5, β10, β20, β40, β80, β81, β162,…, β 570 . The input to the „SQ‟ block is selected by 

the multiplexer depending on the field.  

For an element in GF (2
163

) field, β162 is given as an input to „SQ‟ block; for an element in GF (2
233

) field β232 is 

given as an input to „SQ‟ block; for an element in GF (2
283

) field β282 is given as an  input to „SQ‟ block; for an 

element in GF (2
409

) field β408 is given as an input to „SQ‟ block; and an element in GF (2
571

) field β570 is given as 

an input to „SQ‟ block. Therefore, for an element in GF (2
m
) field βm-1 is given as input to „SQ‟ block. The output 

of the „SQ‟ block is the inverse of the element.   

 

Fig. 3. Block diagram of scalable inverse block 

IV RESULTS 

The proposed Scalable inversion for all 5 NIST recommended Pseudo random curves is implemented by using 

QuestaSim Software and synthesized using Cadence EDA tools. Modified multiplier implemented in this paper 

takes only 7 clock cycle to perform multiplication operation when compared to the [15] which required 9 clock 

cycles as shown in Fig 4(b) and 4(a). 

 

Fig. 4(a). Simulation results of multiplier in [15] 

 

Fig. 4(b). Simulation results of modified multiplier 

Table 2 shows the number of clock cycles required for computing all finite field operations. Multiplication 

requires 7 operations for all 5 curves.  Addition with reduction is performed in 1 clock cycle. The repeated 
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squaring operation to get A
2^t

 mod P is done in (t+1) clock cycles. Therefore, A
2^7

 mod P is obtained in 8 clock 

cycles. For further squaring, the result of the SR block at 8
th

 clock cycle is again fed back to the SR block. 

Table 2.  CLOCK CYCLES FOR FINITE FIELD OPERATIONS 

 

 

 

 

 

 

 

 

A comparison with the previous proposed work is done and a significant reduction in number of clock cycles is 

notable. Table 3 gives the total number of clock cycles required for calculation of finite field operations which 

shows, that the proposed work uses only „7‟ clock cycles for finite field multiplication and „2‟ clock cycles for 

finite field squaring.  

Table 3.  COMPARISON OF CLOCK CYCLES FOR FINITE FIELD OPERATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Synthesis of [15] and proposed work with modified multiplier is done with the Cadence EDA tool and the results 

are provided in Table 4. It can be seen that for the scalable inverse block when it is implemented with the 

modified multiplier, there is a reduction in the number of clock cycles as shown in Table 3, with very less impact 

on area and power consumption as shown in Table 4. 

 

m Multiplication Squaring Inverse 

163 7 2 310 

233 7 2 425 

283 7 2 508 

409 7 2 692 

571 7 2 892 

m Multiplicatio

n 

Squaring Inverse 

[1

4] 

[1

5] 

Thi

s 

wor

k 

[1

4] 

[1

5] 

Thi

s 

wor

k 

[14] [1

5] 

Thi

s 

wo

rk 

16

3 

46 9 7 20 2 2 3654 32

0 

310 

23

3 

78 9 7 28 2 2 7276 44

5 

425 

28

3 

89 9 7 24 2 2 7747 53

0 

508 

40

9 

18

1 

9 7 36 2 2 1667

9 

71

4 

692 

57

1 

33

2 

9 7 42 2 2 2825

9 

91

8 

892 
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Table 4. COMPARISON OF AREA AND POWER CONSUMPTION 

 [15] Proposed 

work 

Increase 

Area 3562758.04 3565110.92 
0.07% 

Power(n

W) 

28413594.09

5 

28417449.56

4 

0.0135% 

 

V  CONCLUSION 

This paper proposes the architecture of a scalable inverse block that can support all 5 pseudo-random curves 

recommended by NIST without re-configuring the hardware. The Karatsuba Ofman algorithm helps to reduce 

the latency by using divide and conquer technique. The proposed design uses Bruaer addition chain which 

reduces latency while maintaining the same area and power consumption when compared with [15]. The work 

presented, computes inverse of 571 bits in 892 clock cycles when compared to 918 [15]. Compared to [14] the 

latency of the proposed architecture is much lower especially when operating with large keys. To handle large 

volume of data, high speed server-side applications are required which can be achieved by this with reduced 

latency and area. The scalability provided helps to establish different security level connections with different 

users. 
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