International Journal of Advanced Technology in Engineering and Science g
Vol. No.5, Issue No. 03, March 2017 ijates

www.ijates.com ISSN 2348 - 7550

LOW LATENCY SCALABLE HIGH PERFORMANCE

ELLIPTIC CURVE INVERSE BLOCK IN GF (2™
Ayesha Siddiqua?, Dr. B. Sarala?

'Department of Electronics and Communication, MVSR Engineering College, Hyderabad, (India)

?Head of Department of Electronics and Communication, MVSR Engineering College, Hyderabad, (India)

ABSTRACT

Scalable Elliptic Curve Cryptography (ECC) inverse block for pseudo random curves is presented. Inverse
block is implemented with all 5 pseudo random curves recommended by National Institute of Standards and
Technology (NIST) without re-configuring the hardware. The divide and conquer method of Karatsuba Ofman
algorithm is used to implement the modified multiplier for obtaining multiplication in finite field. Itoh Tsuji
algorithm is implemented by using Brauer addition chain to obtain inversion in finite field. The proposed
multiplier reduces the latency of inverse with negligible impact on area and power. The simulation results are
analyzed using QuestaSim and synthesis is done using Cadence EDA tools. A comparison with previous

techniques is also discussed in this paper.

Keywords: Bruaer addition chain, Elliptic Curve Cryptography (ECC), Itoh Tsuji algorithm,
Karatsuba Ofman algorithm, National Institute of Standards and Technology (NIST).

I. INTRODUCTION

Techniques involving cryptography are widely being implemented using finite fields. Elliptic Curves were
developed by Koblitz and Miller independently [1],[2]. Elliptic Curve Cryptography (ECC) gained importance
in 2004 after usage of finite fields in Advanced Encryption Standard (AES) private key Cryptography. ECC
makes use of finite field operations. It is more efficient because of shorter key sizes. Inverse is one of the most
trivial operations performed in finite field. The inverse is obtained for all 5 National Institute of Standards and
Technology (NIST) recommended key sizes by repeated multiplication and squaring.

Extended Euclidean algorithm was initially used to obtain inverse of an element. Fermat’s Little theorem and
Euler’s theorem were practiced later to reduce complexity and increase speed. In this paper Itoh Tsuji
algorithm[3] is used which is the fastest algorithm for the calculation of inverse in finite field. Fermat’s Little
theorem is the basis of Itoh Tsuji algorithm. It states that if ‘a’ is a non zero element of GF(2™) thena™ = a®™?,
Multiplication in finite field is implemented by using Karatsuba Ofman algorithm [4]. It uses divide and conquer
technique thus latency and complexity is largely reduced by this algorithm [5]. Modified multiplier is used
which performs finite field multiplication in 7 clock cycles irrespective of the size of the curve. Squaring in
finite field is obtained by interleaving zeroes. The inverses of all 5 NIST recommended curves with key lengths
of 571-bits, 409-bits, 283-bits, 233-bits and 163-bits [6] are obtained using Bruaer addition chain. ECC is

widely being used in many security standards and server side applications because of its complex engineering

118|Page

International Journal of Advanced Technology in Engineering and Science g
Vol. No.5, Issue No. 03, March 2017 ijates

www.ijates.com ISSN 2348 - 7550
and shorter key requirements [7]. The proposed architecture reduces latency providing high speed with utmost

security.
The rest paper is organized as follows: Section Il provides literature review about finite fields and ECC; Section
I11 provides the implementation of modified multiplier, square and reduction (SR) block, inverse block and its

architecture; Section 1V provides the results and comparison; and Section V concludes the paper.
Il. ELLIPTIC CURVE CRYPTOGRAPHY

2.1 Finite Field Operations
ECC is based on one of the hardest arithmetic problems, the elliptic curve discrete logarithm problem, therefore
making ECC a reliable cryptographic technique. The basis of ECC operations are finite field operations. The
operations are finite field addition, multiplication, squaring and inversion. The finite field addition can be
implemented by using bit wise X-OR operation. Multiplication operation is done by Karatsuba Ofman
algorithm. Divide and conquer approach is used here to reduce the complexity of multiplication of large
numbers from O(n?) to O(n'%?) [8]. The algorithm has two configurations; both the configurations are used in
this paper: First configuration can be presented as:
X.Y = (xi2'+ Xo). (¥12'+ Yo) -(1)
= X1.y122™" + [(Xo+Xa). (Yo+Y2) +XaY1+XoYo]2' + XoYo

In equation 1 X.Y can be obtained in three multiplications of ‘1’ bit integers along with 4 additions, when
compared to one multiplication of ‘2’ bit integers. Second configuration can be presented as:

XY = (2% 4342 4x0) - (222! + y12' + yo) -(2)

= Xo Y22+ (%a Y1 +%1 ¥2)2% ! +(X2 Yo +X0 V2 %1 ¥1)27 " +(X1 Yo +X0 Y1)2' +X0 Yo
XY =% yp2* "+ (e +x0) - (Y2 + Yo) + Xa Yo + X Ya12Y H [(Xa +X0) - (Y2 + Yo) + X Y2 +Xo Yo X Yi]22 " +
[(X2 +%0) * (Y1 + Yo) + X1 Y1 +Xo Yol2' + X0 Yo
=U2* "+ [Vt Uphug]2 T Vit U+ up +]2 [k ug + Ugl2' + U

In equation 2 X.Y can be obtained in six multiplications of ‘I’ bit integers along with 11 additions, when
compared to one multiplication of ‘3’ bit integers. 571 is the largest bit size that is to be implemented by the
multiplier. The first and second configurations are used two times to implement multiplication of 571 bit. The
16 bit multiplication is done using finite field multiplier. Implementation of modified multiplier is shown in
Section 111.
Squaring operation is done by interleaving zeroes. Repeated squaring is done to reduce latency; addition is also
implemented in the SR block. The reduction is done in the same block as shown in Section I11, which reduces
complexity to a very large extend. The reduction operation used in the proposed design is based on the reduction
algorithms presented in [9]. Finite field inverse is obtained by repeated squaring and multiplication.
2.2 Itoh Tsuji Algorithm
Inversion is the most time consuming operation in finite field operations [10]. Itoh Tsuji algorithm is used to
find inversion as it is the fastest algorithm[11]. It is implemented by using Bruaer addition chains, which
reduces the number of multiplications and thus latency. Let us consider an element ‘a’€ GF (2™). The inverse of

an element can be obtained using Itoh Tsuji algorithm as:

119|Page

International Journal of Advanced Technology in Engineering and Science g
Vol. No.5, Issue No. 03, March 2017 ijates

www.ijates.com ISSN 2348 - 7550
gl= g2'm2 -3)
g2'm2 = g22'm
where (m-1) is even, 2™-1 = (2™¥2-1) (2™ +1)
where (m-1) isodd, 2™!-1=2(2™?2-1) (2™??+1)+1

Table 1 BRUAER ADDITION CHAIN FOR GF (2°%)

Bui(@) Buj+uk(a) Exponentiation
1 B1(a) a
2 B2(a) B1+1(a) B’ x By
3 Ba(a) B2+2(a) B x Be
4 Ba(a) Bera() Ba™" x B
5 Pis(a) Psss(a) Ba° x Ps
6 B1(a) Pis+1(a) Bis” X By
7 Bas(a) Bi7+17(2) B’ T X By
8 Pas(a) Pas+1(a) Bas”" x By
9 Bro(a) Pas+as(a) Bas” > X Bas
10 P1ao(@) Bro+70(2) Bro” " x Pro
11 Bia1(a) Biao+1(2) Buo” " X B1
12 Bas2(a) Biaz+141(3) Brar” X Brag

The exponents are further simplified in a similar manner. The Bruaer addition chain for 283 bits is shown in
Table 1. From equation 3: a= a®"®%%% = @?®283D- This requires calculation of Bagy(a) where B= a™(2/(j)-1).
Squaring of Bgx(a) is done to obtain inverse of the element ‘a’ in GF(2%*). The addition chain required for the
inversion of element in GF(2°%) is (1, 2, 3, 4, 8, 16, 17, 34, 35, 70, 140, 141, 282). In addition chain, By; is
defined as Bi= (B 2%))*B; .

Thus inverse can be obtained with a maximum of 2[log,(m-1)] number of multiplication operations and the

number of squaring operations required are (m-1).

1. DESIGN AND ARCHITECTURE

3.1 Finite Field Arithmetic Blocks

To obtain inverse, recursive multiplication and squaring is done. Scalability is to implement all 5 NIST
recommended curves without any change in hardware. Modified multiplier is implemented with the help of
Karatsuba Ofman algorithm’s two configurations. For the largest curve of 571bits, second configuration is
implemented two times and first configuration is also implemented two times. This reduces the critical path
when compared to the critical path obtained if two 571 bits were multiplied. The input X of 571 bits is split into
3 parts each of 191 bits.

Each 191 bit is again split into 3 parts each of 64 bits i.e., second configuration is implemented two times. Each
64 bit is again split into 2 parts each of 32 bits. Each 32 bit is again split into 2 parts each of 16 bits i.e., first
configuration is also implemented two times. The 16 bit multiplier is implemented by using bit wise AND and
XOR operations. Different inputs are selected by the multiplexer at each clock cycle to be the operands of the

191 bit multiplier. The output of 191 bit multipliers is registered and added. The multiplication block needs ‘6’

120|Page

International Journal of Advanced Technology in Engineering and Science g
Vol. No.5, Issue No. 03, March 2017 ijates

www.ijates.com ISSN 2348 - 7550
multiplication operations according to the second configuration and ‘1’ clock cycle for addition in the ADD

block, which is nothing but an XOR gate as shown in Fig. 1. Thus total 7 clock cycles are required for
multiplication when compared to the previous work which required 9 clock cycles as shown in Fig 4(b) and 4
(a). Multiplication in all the curves is thus implemented in same number of clock cycles. The squaring finite
field operation can be achieved by interleaving zeroes in between the bits of the operand. Two operations i.e.,
repeated squaring and addition operation are implemented using SR block.

Reduction is done only in the SR block to reduce complexity[12],[13]. The output of the multiplier block is
given as an input to the SR block through ‘X, for reduction after multiplication. A multiplexer is used to select
the input to the reduction module as shown in Fig 2.

1141

381

out

mm—r©®—a4~cZXZ

Out >

1141

Fig. 1. Block diagram of modified multiplier
The least significant 571 bits of ‘X’ are given as an input to the SQ block. For repeated squaring the reduced and
stored output of ‘SQ’ block present in ‘OUT’ is again fed back into the ‘SQ’ block. ‘2’ clock cycles are required
for performing addition and reduction operation. The repeated squaring operation requires ‘(t+1)’ clock cycles to

execute A" mod P.

out

Reduction
block our id

571 571

Fig. 2. Block diagram of SR block
3.2 Scalable Inversion
The block diagram of scalable inverse block is shown in Fig. 3. The inverse for all 5 NIST recommended Pseudo
random curves is obtained without re-configuring the hardware by using the Bruaer addition chain. The Modified

Multiplier and SR block inputs are selected with the help of multiplexers. The intermediate results are stored in a

121|Page

International Journal of Advanced Technology in Engineering and Science <
Vol. No.5, Issue No. 03, March 2017 ij ates

www.ijates.com ISSN 2348 - 7550
set of 571 bit registers, Bl, Bz, B4, Bs, Blo, Bzo, B40, Bgo, Bgl, Blez,..., B 570 . The input to the ‘SQ’ block is selected by

the multiplexer depending on the field.

For an element in GF (2'%) field, Py is given as an input to ‘SQ’ block; for an element in GF (2%°) field B3, is
given as an input to ‘SQ’ block; for an element in GF (2%) field Bog, is given as an input to ‘SQ’ block; for an
element in GF (2*%) field Pugs is given as an input to ‘SQ’ block; and an element in GF (2°™) field Psyo is given as
an input to ‘SQ’ block. Therefore, for an element in GF (2™) field Py is given as input to ‘SQ’ block. The output

of the “SQ’ block is the inverse of the element.

IEEEEEEETEEE RN
A
/E Br | B | B | Bs | Buo | B | Beo | Bro | B (Brse | .ooe | oo [Brir] oo | Brs2| oo | e | Buss | Bire
51
Illlllllllllllllll
‘_; -L‘l:i ‘_1’1_ 571 |Alnv
X Y X Y _’
MOD MULT SR
Z z
/l\ |

Fig. 3. Block diagram of scalable inverse block

IV RESULTS

The proposed Scalable inversion for all 5 NIST recommended Pseudo random curves is implemented by using
QuestaSim Software and synthesized using Cadence EDA tools. Modified multiplier implemented in this paper
takes only 7 clock cycle to perform multiplication operation when compared to the [15] which required 9 clock

cycles as shown in Fig 4(b) and 4(a).

R
e
i

Fig. 4(b). Simulation results of modified multiplier
Table 2 shows the number of clock cycles required for computing all finite field operations. Multiplication

requires 7 operations for all 5 curves. Addition with reduction is performed in 1 clock cycle. The repeated

122 |Page

International Journal of Advanced Technology in Engineering and Science g
Vol. No.5, Issue No. 03, March 2017 ijates

www.ijates.com ISSN 2348 - 7550
squaring operation to get A> mod P is done in (t+1) clock cycles. Therefore, A>” mod P is obtained in 8 clock

cycles. For further squaring, the result of the SR block at 8" clock cycle is again fed back to the SR block.
Table 2. CLOCK CYCLES FOR FINITE FIELD OPERATIONS

m | Multiplication | Squaring Inverse
163 7 2 310
233 2 425
283 7 2 508
409 7 2 692
571 7 2 892

A comparison with the previous proposed work is done and a significant reduction in number of clock cycles is
notable. Table 3 gives the total number of clock cycles required for calculation of finite field operations which
shows, that the proposed work uses only ‘7 clock cycles for finite field multiplication and ‘2’ clock cycles for
finite field squaring.

Table 3. COMPARISON OF CLOCK CYCLES FOR FINITE FIELD OPERATIONS

m Multiplicatio Squaring Inverse

n

[L|[t|Thi|[t|[L]| Thi| [24] | [1 | Thi

4] | 5] S 4] | 5] S 5] S
wor wor wo
k k rk

16 |46 | 9 7 120 2 2 | 3654 | 32 | 310
3 0

23 | 78| 9 7 |28 2 2 7276 | 44 | 425
3 5

28 |89 9 7 | 24| 2 2 7747 | 53 | 508
3 0

40 | 18 | 9 7 136 | 2 2 1667 | 71 | 692
9 1 9 4

57 |33 9 7 |42 2 2 2825 | 91 | 892
1 2 9 8

Synthesis of [15] and proposed work with modified multiplier is done with the Cadence EDA tool and the results
are provided in Table 4. It can be seen that for the scalable inverse block when it is implemented with the
modified multiplier, there is a reduction in the number of clock cycles as shown in Table 3, with very less impact

on area and power consumption as shown in Table 4.

123|Page

International Journal of Advanced Technology in Engineering and Science g
Vol. No.5, Issue No. 03, March 2017 ijates

www.ijates.com ISSN 2348 - 7550
Table 4. COMPARISON OF AREA AND POWER CONSUMPTION

[15] Proposed Increase
work
0,
Area | 356275804 | 356511002 | O07%
0.0135%

Power(n 28413594.09 | 28417449.56
W) 5 4

V CONCLUSION

This paper proposes the architecture of a scalable inverse block that can support all 5 pseudo-random curves
recommended by NIST without re-configuring the hardware. The Karatsuba Ofman algorithm helps to reduce
the latency by using divide and conquer technique. The proposed design uses Bruaer addition chain which
reduces latency while maintaining the same area and power consumption when compared with [15]. The work
presented, computes inverse of 571 bits in 892 clock cycles when compared to 918 [15]. Compared to [14] the
latency of the proposed architecture is much lower especially when operating with large keys. To handle large
volume of data, high speed server-side applications are required which can be achieved by this with reduced
latency and area. The scalability provided helps to establish different security level connections with different

users.

REFERENCES

[1]. V. Miller, “Use of elliptic curves in cryptography,” in CRYPTO85:Proceedings of the Advances in
Cryptology. Springer-Verlag, 1986, pp. 417-426.
[2]. N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,vol. 48, no. 177, pp. 203—
209, 1987.

[3]. T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multiplicative Inverses in GF (2m) Using Normal
Bases,” Information and Computation, vol. 78, no. 3, pp. 171-177, 1988.

[4]. A. Karatsuba and Y. Ofman, “Multiplication of multi-digit numbers on automata,” Soviet Physics Doklady,
vol. 7, pp. 595-596, 1963.

[5]. T-W. Kwon, C-S. You, W-S. Heo, Y-K. Kang and J-R. Choi, “Two Implementation Methods of a 1024-bit
RSA Cryptoprocessor Based on Modified Montgomery Algorithm,” Proc. of ISCAS 2001, vol. 4, p.650-
653, 2001.

[6].National Institute of Standards and Technology, “Recommended Elliptic Curves for Federal Government

Use,” July 1999.

[7].D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic CurveCryptography. New York, NY, USA:
Springer-Verlag, 2004.

[8]. P. G. Comba, “Exponentiation cryptosystems on the IBM PC,” IBMSystems Journal, vol. 29, no. 4, pp.
526-538, 1990.

124|Page

International Journal of Advanced Technology in Engineering and Science g
Vol. No.5, Issue No. 03, March 2017 ijates

www.ijates.com ISSN 2348 - 7550
[9]. Y. Zhang, D. Chen, Y. Choi, L. Chen, and S. Ko, “A high performance ECC hardware implementation with

instruction-level parallelism over GF(2163),” Microprocessors and Microsystems, vol. 34, no. 6, pp. 228—
236, October 2010.

[10] W. Stallings, "Cryptography and Network Security 4™ Ed," Prentice Hall , 2005,PP. 58-309.

[11]. J. Lopez and R. Dahab, “Fast multiplication on elliptic curves over GF (2m) without precomputation,” in
CHES99: Proceedings of the Firstinternational Workshop on Cryptographic Hardware and
EmbeddedSystems. Springer-Verlag, 1999, pp. 316-327.

[12]. J. Solinas, “Efficient Arithmetic on Koblitz Curves,” Designs, Codes andCryptography, vol. 19, pp. 195-
249, 2000.

[13]. Y. Zhang, D. Chen, Y. Choi, L. Chen, and S. Ko, “A high performance ECC hardware implementation
with instruction-level parallelism over GF(2163),” Microprocessors and Microsystems, vol. 34, no. 6, pp.
228-236, October 2010.

[14] K. C. Cinnati Loi and Seok-Bum Ko” High Performance Scalable Elliptic Curve Cryptosystem Processor
in GF(2m)” - IEEE Trans 2013

[15] K. C. Cinnati Loi and Seok-Bum Ko” FPGA Implementation of Low Latency Scalable Elliptic Curve
Cryptosystem Processor in GF(2m)” - IEEE Trans 2014C.

125|Page

