

888 | P a g e

DRAMATIC IMPROVEMENT OF THE REUSE

PROCESS: DOMAIN ANALYSIS

1
Ms.G.Lavanya,

2
Dr.M.Vinaya Babu,

3
Ms.A.Priyanka

1,3
Sphoorthy Engineering College

2
Chalapathi Institute of Engineering and Technology

1,3
Assistant Professor,

2
Professor

ABSTRACT

The objective of this paper is to provide a brief introduction to the area of domain analysis as seen from the

software engineering perspective. The approach is by illustrating the concepts through selected reported

experiences and to point out the specific characteristics of these experiences that relate to domain analysis.

Definitions are introduced after the examples to avoid over explaining the concepts. A model for the domain

analysis process is also proposed. The concept of a library based domain infrastructure is introduced as an

attempt to show how domain analysis is integrated into the software development process.

A second objective in this paper is to give a perspective on some of the research issues facing domain analysis.

The nature of the process calls for a variety of multidisciplinary issues ranging from knowledge acquisition and

knowledge representation to management and methodologies to cultural and social questions.

I. INTRODUCTION

We define domain analysis as a process by which information used in developing software systems is identified,

captured, and organized with the purpose of making it reusable when creating new systems. During software

development, information of several kinds is generated. From requirements analysis to specific designs to

source code. Source code is at the lowest level of abstraction and is considered the most detailed representation

of a software system. Complementary key information is also generated during software development. Code

documentation, history of design decisions, testing plans, and user manuals are all essential to convey a better

understanding of the total system.

One of the objectives of domain analysis is to make all that information readily available. In making a reusability

decision, that is, in trying to decide whether or not to reuse a component, a software engineer has to understand

the context, which prompted the original designer to build the component the way it is. The chain of design

decisions used in the development process is absent in the source code. By making this development

information available, a reuser has leverage in making reuse more effective.

A more dramatic improvement of the reuse process results when we succeed, through domain analysis in

deriving common architectures, generic models or specialized languages that substantially leverage the software

development process in a specific problem area. How do we find these architectures or languages? It is by

identifying features common to a domain of applications, selecting and abstracting the objects and operations

that characterize those features, and creating procedures that automate those operations. This intelligence-

intensive activity results, typically, after several of the "same kind" systems have been constructed. It is then

889 | P a g e

decided to isolate, encapsulate, and standardize certain recurring operations. This is the very process of domain

analysis: identifying and structuring information for reusability.

Unfortunately, domain analysis is conducted in an ad-hoc manner and success stories are more the exception

than the rule. The process of concept abstraction from identifying common features is usually considered as an

exclusive human (i.e., intelligent) activity and commonly associated with "experience". Expert programmers, for

example, are more proficient in coming up with the appropriate program construct that solves a given

programming problem than novice programmers. Through experience, experts have created a larger collection

of abstracted templates they can draw from when trying to solve a problem. This is reuse of encapsulated

knowledge. Little is known about the process involved in deriving and organizing such collections of abstract

concepts. Gaining experience is a slow unstructured learning process. Similarly, domain analysis is a slow

unstructured learning process that leads to the identification, abstraction, and encapsulation of objects in a

particular domain.

Typically, knowledge of a domain evolves naturally over time until enough experience has been accumulated

and several systems have been implemented that generic abstractions can be isolated and reused. Take for

example the domain of report generators. It was recognized that report generation was an inherent component of

all business applications systems. Experts analyzed the basic functions involved in generating reports and

designed systems to automate the process. A firing neuron model may be appropriate to illustrate the domain

analysis process; it requires a critical charge to achieve a qualitative change. In domain analysis, experience and

knowledge is accumulated until it reaches a threshold. This threshold can be defined as the point when an

abstraction can be synthesized and made available for reuse.

The current ad-hoc nature of domain analysis can be compared to the way software was developed in the early

days. Cleverness was the rule in the individually developed specialized programs of the time. As the need for

larger more complex systems emerged, more systematic and structured approaches were developed. Cleverness

is now the rule in analyzing a domain. Success translates into identifying the right domain, abstracting the

essential objects and operations, encapsulating them in the form of procedures or generic architectures or a

formal language, and reusing them. Examples range from spreadsheets to forms management to small

specialized languages (e.g., numerical control machines, SQL). In order to truly exploit reusability in more

complex domains we need to develop formal approaches to domain analysis. A goal in domain analysis research

is to provide the means to facilitate charging the neuron of our model for the qualitative change required for a

high level reuse. To accomplish this goal we must find ways to extract, organize, represent, manipulate and

understand reusable information, to formalize the domain analysis process, and to develop technologies and

tools to support it.

Domain analysis research can benefit significantly from work in other areas. Many of the issues in domain

analysis are also issues in other disciplines. Reusable information is a kind of knowledge and extensive research

and technologies are available. Artificial intelligence offers tools and techniques for knowledge acquisition and

knowledge representation. Systems analysis also offers well-developed techniques and proven methodologies to

help us understand the domain analysis process. Information management technology such as hypertext may

bring ideas in visualizing and understanding reuse information. Domain analysis research should try to reuse

existing research from other disciplines.

890 | P a g e

II. BACKGROUND

The term domain analysis was first introduced by Neighbors [Nei81] as "the activity of identifying the objects

and operations of a class of similar systems in a particular problem domain." He draws the analogy of domain

analysis to systems analysis. The difference being that systems analysis is concerned with the specific actions in

a specific system while domain analysis is concerned with actions and objects in all systems in an application

area. During his research with Draco, a code generator system that works by integrating reusable components,

he pointed out "the key to reusable software is captured in domain analysis in that it stresses the reusability of

analysis and design, not code."

Neighbors later introduced the concept of "domain analyst" [Nei84] as the person responsible for conducting

domain analysis. The domain analyst plays a central role in developing reusable components. A domain analyst

is expected to be a person of all trades. He or she must understand systems analysis, the domain of application,

the software technology at hand, and be able to communicate with the players in each of these areas. To better

meet all these requirements, Neighbors goes further in suggesting that the domain analyst be also a domain

expert.

The Common Ada Missile Packages (CAMP) Project [Cam87] took Neighbors' ideas into practice. The CAMP

Project is the first explicitly reported domain analysis experience and they acknowledge that "[domain analysis]

is the most difficult part of establishing a software reusability program". They analyzed eleven tactical missile

systems, identified several common components, and grouped them by their functionality. A set of general

design templates in the form of Ada generics were derived and later integrated in a design support system, the

Ada Missile Parts Engineering Expert (AMPEE), that supports component identification, component selection,

and component construction.

The main concern in this approach is "how to accommodate the largest number of potential product users in the

product marketplace. "In other words, how to identify, a priori, the areas of maximum reuse in a software

application". McCain introduces a set of guidelines to conduct domain analysis. The process has three basic

steps that recur repeatedly for different kinds of components:

1 identification of reusable entities

2 abstraction or generalization

3 classification and cataloging for further reuse.

This product-oriented paradigm has been tested successfully in several projects at IBM Federal Systems. Their

experience in this approach was an important factor for a recent award as principal contractor in the STARS

(Software Technology for Adaptable and Reliable Systems) project.

Drawing in part from the above experiences, Prieto-Diaz [Pri87] proposed a more cohesive procedural model for

domain analysis. His model is based on a methodology for deriving specialized classification schemes in library

science. In deriving a faceted classification scheme, the objective is to create and structure a controlled

vocabulary that is standard not only for classifying but also for describing titles in a domain specific collection.

Prieto-Diaz extended this technique to domain analysis as a procedural model in a series of data flow diagrams.

He defines specific activities and intermediate products that not only convey a better understanding of the

domain analysis process but also provide the basis for identifying tools that could support some of these

intermediate activities. Another contribution of this model is the definition of inputs and outputs to the domain

analysis process. A key control input is a domain analysis methodology custom-built for each specific domain.

891 | P a g e

Outputs include: domain model, domain taxonomy, domain language, domain standards, and reusable

components. A project at GTE Laboratories is currently underway to test this model. In an analysis of the

process of building application generators and its relation to domain analysis, Cleaveland [Cle88] points to the

need for a methodological approach to building generators. The ad-hoc nature of building application generators

often results from insights spontaneously gained on the job, rather than from the systematic application of

methods and are, therefore, seldom documented. In an attempt to formalize the process, Cleaveland identifies

seven basic steps for building application generators. All but one are "the job of the domain analyst." Key steps

are recognizing domains, defining domain boundaries, and defining an underlying model. One of the most

difficult tasks is recognizing "when a domain is mature for a generator". He suggests two heuristics: 1) has a

formal or informal notation surfaced within the user community, and 2) are there identifiable patterns or

regularities in the applications generated in a user community? A concern in domain analysis research is that we

can not wait indefinitely for a natural evolution of a domain but must stimulate its maturation process through a

systematic process.

Arango [Ara88] focused on this concern and proposed a different approach to domain analysis. The basic

premise in this approach is to see reuse as a learning system. The software development process is seen as a

self-improving system that draws from a "reuse infrastructure" as the knowledge source. Domain analysis is then

a continuing process of creating and maintaining the reuse infrastructure. Arango breaks new ground in

formalizing the process. Assuming the existence of a reuse infrastructure consisting of reusable resources and

their descriptions (e.g., a repository) and given a specification of the system to be build, a reuse system attempts

to produce an implementation of the specified system by reusing information from the infrastructure. In closing

the process loop, the output (i.e., the implementation) is compared to the input and the system is evaluated by a

measure of performance. In order to keep a good performance level, the infrastructure is continuously revised.

Domain analysis is therefore integrated in the software development process.

III. RELATED DOMAIN ANALYSIS EXPERIENCES

FNIX- The late (phi)NIX project at Schlumberger-Doll Research [Bar85] is an example of a domain-specific

automatic programming system. Specialized oil-well logging knowledge is captured and organized into problem

solving rules that generate informal specifications. These informal specifications are further formalized through

a refinement process that adds domain specific details. At this point domain independent rules that deal with

programming implementation issues are applied to generate code. One of the objectives of this project was to

demonstrate that automatic programming is more effective if there is a separation of domain knowledge from

programming knowledge. One of their conclusions was that there is a need to know more "about how to

organize and structure domain knowledge" so that it can be reused. They note further that solving these kinds of

problems is what would make possible for "automatic programming systems to learn from experience."

Programmer's Apprentice- Another research effort where domain analysis has become a key factor is the

Programmer's Apprentice Project [RW88], a system based on the concept of assisting the programmer in the

routine details of programming analogous to how chief programmer teams work. A key concept in this project is

that "programmers seldom think in terms of primitive elements" like low level programming instructions, but

rather, they think "mostly in terms of commonly used combinations of elements".

892 | P a g e

KATE- A step towards understanding the process of knowledge extraction and use in the software development

process has been the KATE project [FN88]. The KATE project recognizes the limitations of current software

specification techniques. In these techniques most of the knowledge on specification construction remains with

one person; the expert. In trying to bring more of this type of expert analysis knowledge into the computer, they

have proposed a system that "tries to acquire problem specification" for an intended system. They see the

production of systems specifications as an interactive problem-solving process based on critique. Their analyst

assistant (KATE) asks questions and issues critiques to a starting set of specifications.

The interactive sessions between client and assistant are a refinement process to create valid, unambiguous, and

consistent specifications. Since "clients have only a vague notion of what they want and only a narrow view of

what is possible," a "good analyst has expertise in pulling out the key points of a client's problem." The expertise

of KATE has its origin in a set of protocols collected over several analysis sessions. KATE uses these protocols

to elicit specification information from the client. Protocol collection, selection, analysis, and coding are an

example of domain analysis

IV. DEFINITIONS

Domain: In a broad context it is "a sphere of activity or interest: field" [Webster]. In the context of software

engineering it is most often understood as an application area, a field for which software systems are developed.

Examples include airline reservation systems, payroll systems, communication and control systems,

spreadsheets, and numerical control. Domains can be broad like banking or narrow like arithmetic operations.

Broad domains consist of clusters of interrelated narrower domains usually structured in a directed graph. To

"reserve a seat" in the domain of airline reservation systems, for example, an update operation is called from the

domain of database systems. To "update a record" in the database domain, operations from a still more basic

domain, like programming languages, are needed. Other domains like user interfaces (e.g., screen manipulation,

mouse interaction) are also instrumental for airline reservation systems. Domains, therefore, can be seen as

networks in some semi hierarchical structure where primitive, narrow domains such as assembly language and

arithmetic operations are at the bottom and broader, more complex domains are at the top. Domain complexity

can be characterized by the number of interrelated domains required to be operational.

Domain Boundary: Each domain in these domain networks is limited by a boundary that defines its scope. The

borders define what objects, operations, and relationships belong to each domain and delimit their operational

capability.

Domain Analysis: As indicated in the introduction above, domain analysis can be seen as a process where

information used in developing software systems is identified, captured, structured, and organized for further

reuse. More specifically, domain analysis deals with the development and evolution of an information

infrastructure to support reuse. Components of this infrastructure include domain models, development

standards, and repositories (libraries) of reusable components. Domain and boundary definitions are also

activities of domain analysis. Unfortunately, a standard (universal) definition of domain analysis is yet to come.

Due to the nature of the activities and issues involved and to the newness of the area, different communities

perceive domain analysis differently. One of the objectives of this paper is to channel some of these differing

perceptions towards a unified view of domain analysis.

893 | P a g e

V. THE DOMAIN ANALYSIS PROCESS

To better illustrate our view of domain analysis, the SADT context diagram in figure 1 shows the inputs, outputs,

controls, and mechanisms involved in domain analysis. Information is collected from existing systems in the

form of source code, documentation, designs, user manuals, and test plans, together with domain knowledge and

requirements for current and future systems. Domain experts and domain analysts extract relevant information

and knowledge. They analyze and abstract it. With the support of a domain engineer, knowledge and

abstractions are organized and encapsulated in the form of domain models, standards, and collections of reusable

components. The process is guided by domain analysis methods and techniques as well as management

procedures. The domain analysis process may be part of a software development environment.

This is an ongoing process of continuous refinement. As reusable resources are made available and new systems

are constructed, they are used to refine existing domain models and to contribute to the reuse library. A formal

domain language that isolates systems designers and builders from software construction details would be a

prime objective of this refinement process.

The domain analyst plays a central role. He or she coordinates the whole analysis process. The domain expert

and domain engineer both play supporting roles in facilitating the input or acquisition phase and the output or

encapsulation phase respectively. Typical domain models range in level of complexity and expressive power

from a simple domain taxonomy to functional models to domain languages. Standards may include requirements

specifications and design methods, coding standards, development procedures (e.g., walk-throughs),

management policies, and library maintenance procedures.

We have identified three specific roles critical to a reuse infrastructure: a librarian, an asset manager, and a reuse

manager. All three complement the tasks of the domain analyst, expert, and engineer by managing the reusable

resources and collecting information. The librarian task is to promote reuse by making assets available and

easily accessible to potential reusers, the asset manager controls asset quality and standards compliance, and the

reuse manager supports data collection relevant to domain analysis and coordinates the overall reuse effort.

A reuse library system is necessary to support all the tasks and processes of a reuse infrastructure.

6. Issues in Domain Analysis Research

Knowledge representation: How can we represent knowledge in a way that humans easily understand it and also

machine processable? This topic has been the subject of extensive study in artificial intelligence and database

modeling [CF82, BMS84]. Widely used approaches include E-R diagrams, predicate logic, semantic nets,

production rules, and frames. Each approach offers its own unique features and trade-offs. Semantic net

models, for example, offer explanatory power and rich conceptual associations but are difficult to implement and

to maintain. Rule-based models do not offer the expressive power of semantic nets but are less difficult to

implement and maintain.

Database systems also offer some answers to the knowledge representation problem. Although more limited in

supporting artificial intelligence functions like inference and learning, database systems offer standard, widely

used technology that is efficient, easy to use, and easy to maintain.

Graphical models, like hypertext, offer an alternative to represent knowledge for ease of human understanding.

In fact, hypertext has opened up new possibilities to use the computer as a communication and thinking tool.

Through browsing, an analyst can discover objects and relationships in a domain. Hypertext technology has

captured the attention of researchers and industry and several implementations are now available [Con87].

894 | P a g e

Visual programming is also an alternative well suited to represent and facilitate understanding of certain

software workproducts like execution patterns, specification and design animations, testing plans, and systems

simulation. Domain analysis research should benefit from the several ongoing research projects in visual

programming [COM85].

There is a need in domain analysis research to integrate results from research efforts and emerging technologies

in knowledge representation. What knowledge representation approaches best support the various activities and

products of domain analysis? What techniques may be better suited to represent domain models, reuse libraries,

and software products?

Knowledge Acquisition: What combination of knowledge representation and knowledge acquisition techniques

is best suited for the different kinds of information required in domain analysis? There is a significant trade-off

between knowledge representation and difficulty in knowledge acquisition. Populating a relational database, for

example, is a much simpler task than creating a semantic net. Knowledge representation models that offer more

explanatory power demand higher up-front investment and cognitive effort. There is a need to explore the best

technique or combination of techniques that allow for better systematic reuse of software products.

Evolution of information: A key issue in a software development model based on reuse is the feed-back

mechanism required to refine the process. There is a need for new software development models that integrate

the notion of evolution and refinement into the process. A step in that direction has recently been taken by Basili

et.al. from the University of Maryland [BR88]. Basili's group proposes a reuse-enabling software evolution

environment model that explicitly models learning, reuse, and feedback activities. The integrating element in

this model is an "experience base" that records software development experience and promotes "tailoring" and

"generalizing" cycles on three levels of information: project specific, domain specific, and general or domain

independent. An experimental prototype environment, TAME (Tailoring A Measurement Environment), is

currently undergoing evaluation.

Validation: Complementary to feed-back and refinement is information validation. There is a need to know if

the information used for domain analysis actually contributes to a better performance of the software

development process. Furthermore, there is a need to know when a certain level of refinement has been

achieved. An acceptable level could be, for example, when a design model or an architecture has been

standardized and used systematically in developing new systems. However, for other components of the reuse

infrastructure like the reuse library, validation of new components may be an ongoing process.

VI. CONCLUSION

The objective of this paper has been to provide a brief introduction to the area of domain analysis as seen from

the software engineering perspective. Motivation and justification for domain analysis was presented in the first

section. In the background section we addressed some of the research efforts in software engineering that are

explicitly called domain analysis

A model for the domain analysis process was also proposed. The concept of a library based domain

infrastructure was introduced as an attempt to show how domain analysis is integrated into the software

development process.

895 | P a g e

The last section gives a perspective on some of the research issues facing domain analysis. The nature of the

process calls for a variety of multidiciplinary issues ranging from knowledge acquisition and representation to

management and methodologies to cultural and social questions.

REFERENCES

1 .http://wiki.hl7.org/index.php?title=Domain_Analysis_Model

2. http://www.agilemodeling.com/style/classDiagram.htm

3. https://wiki.nci.nih.gov/x/cxRlAQ

4. http://fuge.sourceforge.net

5 .http://isatab.sourceforge.net

6. [AM88] W. Agresty and F. McGarry. The Minnowbrook Workshop on Software Reuse: A Summary

Report. Contract NAS 5-31500, Computer Sciences Corporation, Systems Sciences Division, 4600

Powder Mill Rd., Beltsville, MD 20705, March, 1988.

7. [Ara88] G. Arango. Domain Engineering for Software Reuse. Ph.D. Thesis, Department of

Information and Computer Science, University of California, Irvine, 1988.

8. [Bar85] D. Barstow. Domain-specific Automatic Programming. IEEE Transactions on Software

Engineering, SE11(11)1321-1336, November, 1985.

9 . [BMS84] M. Brodie, J. Myopolus, and J. Schmidt. On Conceptual Modelling. Springer Verlag, New

York, 1984.

10. [Boo86] G. Booch. Object-Oriented Development. IEEE Transactions on Software Engineering, SE-

12(2)211-221, February, 1986.

11. [BR88] V.R. Basili and H.D. Rombach. Towards A Comprehensive Framework for Reuse: A Reuse-

Enabling Software Evolution Environment. UMIACS-TR-88-92, Institute for Advanced Computer

Studies, University of Maryland, College Park, MD, December, 1988.

12. [bsh88] Bass Harbor Workshop on Tools and Environments for Reuse, Bass Harbor, Maine, June 21-

24, 1988. Participants proceedings.

13. [Cam87] CAMP, Common Ada Missile Packages, Final Technical Report, Vols. 1, 2, and 3. AD-B-

102 654, 655, 656. Air Force Armament Laboratory, AFATL/FXG, Elgin AFB, FL, 1987.

14. [CF82] P. Cohen and E. Feigenbaum. The Handbook of Artificial Intelligence, Vol. III. W.

Kaufmann, Los Altos, CA, 1982.

15. [Cle88] J. Cleaveland. Building Application Generators. IEEE Software, 5(6):25:33, July 1988.

[COM85] IEEE COMPUTER, Special Edition on Visual Programming, 18(8), August, 1985.

http://wiki.hl7.org/index.php?title=Domain_Analysis_Model
http://www.agilemodeling.com/style/classDiagram.htm
https://wiki.nci.nih.gov/x/cxRlAQ
http://fuge.sourceforge.net/
http://isatab.sourceforge.net/

